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PREFACE

Introductory Fast Reactor Physics Analysis is essen-
tially the lecture notes of a seminar course. The lectures
were presented as a part of the programs of the Scuola di
Speciallizzazione in Ingegneria Nucleare of the University of
Bologna and of the Centro di Calcolo (Bologna) of the Comitato
Nazionale Energia Nucleare of Italy during the academic year
1962-1963 by the author during a year's visit as a consultant
and lecturer. Thelectures werealso presented at the Com-
itato's Cassacia Center, near Rome, in the summer of 1963.

The lectures had the primary purpose of teaching
the rudiments of fast reactor physics with emphasis on cal-
culational analyses. The subject matter was chosen as an
introduction to fast reactor analyses for persons reasonably
familiar with thermal reactor physics. The intent was to
present a directly practical course which at the same time
would introduce sufficient subject matter to enable the stu-
dent to sense the possible pitfalls in blind adherence to recipe
calculations whichare so tempting because of the readyavail-
ability of multigroup cross-section sets and reactor machine
codes,

The sectional divisions of this report do not neces-
sarily correspond exactly to the divisions of the lectures.

The author wishes toacknowledge the kind invitation
of the Centro di Calcolo of C.N.E.N. which resulted in the
preparation and presentation of the lecture series.

The author's thanks are also due to a number of Ar-

gonne colleagues who critically read the preliminary draft
of this report.
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INTRODUCTORY FAST REACTOR PHYSICS ANALYSIS

by

David Meneghetti

ABSTRACT

This report consists essentially of the lecture notes
of a course in fast reactor physics analysis presented bythe
author. The subject matter is thatof an introduction to cal-
culational analyses of fast reactor physics for persons rea-
sonably familiar with thermal reactor physics, Includedare
discussions of fast reactor characteristics, breeding, multi-
group methods, cross-section definitions and evaluations,
discrete ordinate transport methods, transport approxima-
tion, BN method, asymptotic diffusion theory, equilibrium
spectra, resonance effects, perturbationanalysis, shape fac-
tor, lifetime, delayed-neutron fraction, reactivity-period re-
lations, coupled systems, sodium void effect, and Doppler
effect.

I. INTRODUCTION
Nuclear reactors may be classified by the distribution in energy of
the neutron flux, i.e., the energy distribution of the neutrons producing
fission in the fuel. Table I lists the approximate energy ranges.

Table I

ENERGY RANGE OF THE PREDOMINANT REACTOR CLASSIFICATIONS

Reactor Classification Thermal Intermediate Fast
Degree of Moderation | Thermalized | Partially Unthermalized
Thermalized
Predominant Energy | 1 eV ~1 eV >~10 keV | 510 keV
Range

The energy distribution of promg)t fission neutrons have been approx-
imated by the semi-empirical relation: 1)

s(E) = c e-3E sinh,\ﬁnf,

where if a = 1, and b = 2, ¢ = 0,484, with E expressed in MeV. The
spectrum is shown in Fig. 1. The constants are not, however, identical for



the various fissionable materials.
For example, measurements(2) gave
a= 1,036, b =2.29, and c = 0.4527 for
U?3% and recent measurement5(3)
gave a = 105 =0R0SMpI=F2, 3 + 40, 105
and c = 0,465 for W23,

s(E)

MAX | MUM

The energy distribution of
flux in a thermal reactor is primar-
ily due to the slowing down of the
nascent fission-source distribution
by elastic collision processes with
the light nuclei of the moderating

Fig. 1. Energy Spectrum of materials. This results in a pro-
Fission Neutrons gressive energy loss of the neutrons
in the laboratory system of coordi-
nates. A nonthermalized neutron of any energy E' furthermore has equal
probability of reduction of its energy to any energy E which is between
aE' and E', wherea = (A - 1/A+ 1)2 upon any single elastic collision event
with nuclei of mass number A, This results in an increasing flux value
with decreasing energy. This flux "pile-up" reaches its conclusion in
the Maxwell-Boltzmann thermal distribution. The integrated magnitude
of this thermal distribution in a nonleakage case depends upon the balance
between the "piling-up" due to moderation and the integrated thermal ab-
sorption of the neutrons arriving at thermal energies. The absorption
during slowing down is either neglected or can be considered to occur in
definite energy regions, such as, for example, the epi-cadmium U cap-
ture resonances.

E, Mev

This transformation of the fission-source distribution, s(E), into the
flux distribution can be readily seen for the case of a large (negligible
leakage) hydrogen-moderated system. 1 Recalling that for hydrogen a
neutron of energy E' can be changed in energy to E between E' and zero
with equal likelihood by an elastic collision, one obtains the usual collision
density integral balance equation:

® 25(E')¢(E")

Z,(E)(E) = s(E) +f Belplolsy
E E

The flux solution is

as may be verified by substitution.



At very large energies the integral is small relative to s(E)/S (),
so that for ZS(E) = const. the flux distribution is that of the fission source,
As the median energy of s(E) is about 2 MeV, at E £ 1 MeV the integral

00
term predominates. Furthermore, when f s(E') dE' is for practical con-
E
siderations constant, below ~0.1 MeV the ¢(E) varies as l/E if 2¢(E) is
constant,
The general features of the

TAIL OF FISSION

DISTRIBUT | ON flux distribution in a thermal system

MAXWELL DISTRIBUTION

are shown in Fig. 2.

In contrast, the energy dis-
tribution of the flux in a nonmoder-
ated, (i.e., fast) system is largely
determined by modification of the
Fig. 2. General Features of Thermal fission spectrum by inelastic scat-

System Flux (Not to Scale) tering processes of the fast neutrons

with the atoms of fuel, fertile, cool-
ant, and structural materials (such as U?3® U?3® Na, and Fe)of fastreactors,

E —>

Inelastic scattering is characterized by a threshold energy below
which the interaction is zero. A neutron upon being inelastically scattered
to below the threshold by one or more inelastic collisions can subsequently
lose additional energy only by the nearly negligible energy moderation by
elastic collisions with the moderately heavy and heavy elements present or
by the presence of some lighter atoms such as oxygen or carbon present as
oxides or carbides of the fuel and fertile materials. In any case, the
slowing-down efficiency by elastic collisions is not sufficient to overcome
absorptions and leakage losses during this moderation. An increasing flux
with decreasing energy is therefore not produced, but rather a modified
and shifted fission-type distribution maximum is produced.

Examples of inelastic interactions are the three lowest levels (i.e.,
45, 150, and 700 keV) and numerous higher levels in U?% whichis frequently
a principal diluent and fertile material in both core and blanket regions of
fast reactors. The calculated curves in Fig. 3 indicate the general features
of threshold and quasi-plateau shapes of the levels as calculated(4) by the
strong-coupling statistical model.

It is to be noted that the thresholds of the lower-lying levels for the
heavy fissile and fertile isotopes are low in energy relative to the bulk of
the fission spectrum distribution. The low-lying levels thus affect the en-
tire fission spectrum by shifts in energy. A neutron having energy above
a given threshold will lose upon inelastic collision an increment of energy
approximately equal to the value of the threshold energy if center of mass
to laboratory corrections are neglected.



2 O e T T oo sl T T ety As a large fraction of the
nascent fission spectrum lies above
such threshold energies, the inelas-
tic interactions result in incremental

27 (45 kev)

IRERIE shifts of the entire original source
B distribution. Furthermore, the cross
i sections for absorptions cannot nec-
: essarily be neglected relative to the
1508 inelastic cross sections, Because of

the variations of most cross sections
with energy, a bulk treatment for ab-
B sorption processes, such as the res-
onance escape factor of thermal

reactor analyses, has not been prac-

0.5 |-

INELASTIC CROSS SECTION, barns

tical. The flux distribution in energy
is also quite sensitive to composition

and leakage properties of the fast

it e
0 0.5 1.0 AR g
INCIDENT NEUTRON ENERGY, Mev The mode of modification of
the fission spectrum by inelastic and
Fig. 3. Calculated Inelastic Levels absorption may be seen by consider-
in U?® (Ref. 4) ing an idealized simplified example.

Suppose Z; (E) a step function with
threshold Et and 2, a constant absorption cross section. Then the uncol-
lided, first collision, second collision, etc., sources (see Fig. 4) are given
by the expressions:

Uncollided source = fission distribution = s4(E)

Zs (E+Et)
15t collision source = s)(E) = —————Y - (E+E
L S (E+Ey) + 3, ol 2
2. (E+E,)
21d collision source = s;(E) = =L e (E+Ey)

S ETE) 2
( Zin(E+E¢) m(E+ZEt) :
— +
ZialE+E) + 2, |\ S (E+2Eg T 50 ) Tl
( 2 (E+E) >
= so(E+2E
zm(E+E o of t)

o Et
3in(E+Eq)

n
nth collision source = s,(E) = > o(E+nE¢),

The flux ¢(E)



The numerator is essentially the sum
of shifted fission shapes with de-
creasing weighting. The example also
sh indicates the important distinction
between sources and fluxes. A sim-

Sp

ilar example of interest would be to
assume that there exists also a con-

stant elastic-scattering cross sec-
0 tion, ZS, in addition to the previous
E —= ¥ 4 :
interactions, assuming that the elas-

Fig. 4. General Features of the tic moderation however is negligible.

Shifted Partial Sources
(Not o Scale) Elastic moderation may not,

however, be generally small relative
to inelastic moderation in fast reactors. On the low side of the flux maxi-
mum it can be important in determining the shape and level of the low-energy
tail, where inelastic-scattering effects become small or are nonexistent.

Typical average core fluxes e e e S B am el e
are those calculated(5) for the EBR-I, % 28} PBR 1
EBR-II and PBR. These are shown § 1 |
in Fig. 5. At very high energies all 3
the distributions correspond to the E 20 FERT 1
high-energy fission spectrum tail 2 =
shape. §

w I2 -

EBR-I Experimental Breeder I Y
Reactor-I)is about a 1-MW, 6-liter, & #8f e s FISSION IN U235 1
fast core fueled by highly enriched § 4 e S ]
uranium fuel with stainless steel g T SRR
el ellackiig Eal NElX cerlEmiediiean o = e e e e e
breeding blanket is of natural uran- NEUTRON ENERGY, Mev
ium. EBR-II has instead a 50-liter
core volume and is fueled by about Fig. 5. Comparison of Neutron
50% enriched uranium fuel. The PBR Spectra for Various Sizes
(Power Breeder Reactor) fluxis rep- of Fast Reactors (Ref. 5)

resentative of a 800-liter core, fueled

by 15 to 20% enriched uranium, or Pu-U?*, fuel and having a power of
greater than 600 MW of heat. Coolants occupy about 50% of the core vol-
umes. It has been noted(5) that although the energy position of the maxima
are not much displaced relative to one another, the median energies, how-
ever, are much different.

Another characteristic of fast systems is the large amounts of fuel
required, i.e., critical mass, relative to a thermal system of, for example,
the same core volume. This results primarily because of the relatively
small values of cross sections in the high-energy region of fast reactors



in contrast with the magnitudes of thermal cross sections, For example,
the U?% fission and capture cross sections are hundreds of times smaller
than in the thermal-energy

Table II region. Approximate order-
of-magnitude values for w2
APPROXIMATE CROSS SECTIONS are given in Table IIL.
OF U?%*® IN THERMAL AND FAST
SYSTEMS Similar orders of mag-
nitudes exist for the fission-
Thermal (2200 m/sec) Fast(8) able U?3? and Pu?® species as
well as for the usual fertile
O, b 582(6) =1.4 and diluent materials. The

values for the fast systems
are greatly dependent upon
Otr, b 698 [og = 15 (7)) ~6.8 the neutron flux spectrum
distribution.

O, b 101(6) ~0.25

This consideration emphasizes the importance of reducing core vol-
ume by increasing the fuel density.

To a large extent this is possible because no volume is required for
moderator material. Further reduction of core volume is generally limited
in power-producing systems by the large coolant volumes required to insure
removal of the heat consistent with the total power and the temperature lim-
itations of the materials.

Thus, the minimum practical core size is fixed by the amount of
power per unit of core volume that can be handled by the coolant volume
and coolant flow. The overall results are that a fast reactor has a higher
power density per unit core volume than a liquid-cooled thermal system
of the same total power,



II. BREEDING

In view of the larger critical masses and power densities per unit
volume of a fast reactor relative to a thermal reactor, one might ask why
consider a fast reactor except for special cases where smaller volume
requirements are necessary. The answer, of course, is the possibility of
existence of effective breeding ratios sufficiently larger than unity so that
in practice the entire conversion of the natural supply of otherwise non-
fissionable fertile materials may be efficiently converted to fissionable
materials and thereby become available for power production.

Fertile materials such as U%*® or Th?? are placed in the reflector
blankets of fast reactors for breeding purposes. Generally, fertile ma-
terial is also present as a core diluent for core breeding.

Consider the conversion of the nonthermally fissionable e isotope
into the thermally fissionable plutonium isotopes of odd atomic mass

number. The reaction chain for this case is reproduced in Fig. 6.(8)

Irradiated U?*® fertile ma-

2u2 5x 10y terial thus contains a mixture of
i = higher plutonium isotopes. The

T("-” o isotopic composition of the con-
i —& > tained plutonium will depend upon

1(n, 7)

the particular reactor system, be-
cause of the spectral dependence of

3

14h a0 Tm; lh 6.6x 10
240 240 5 2ue . Y, i ]

p-- MNp B- u a the neutron cross sections in the
r(n. ” T(n,Y) 1(n,7) build-up chain, and upon the previ-

u - s : :

230 -2:—'“- 239 % oy 2® 2.44x10 ous irradiation history of the fertile

= - Pu a

(n,7)

Fig. 6. Nuclear Reactions under
Neutron Irradiation of

U2% (Ref. 8)

material. Recycle, of the plutonium
isotopes in a reactor will change
the isotopic concentrations. An
equilibrium condition will ultimately
be approached which is a function of
fuel cycle, core design, and feed
material.

For example, the plutonium isotopic composition (in a/o): Pu?®?,
74.7%; Pu?*°, 10.2%; Pu?*, 12.4%; and Pu?%, 2.7%, is reported(g) to corre-
spond to a recycle plutonium extracted from a thermal reactor fueled with
enriched uranium oxide, such as the "Yankee" reactor.

For comparison,
a reported(g) case of extreme recycling is:

Pu?®?, 40%; Pu?*, 10%; Pu?*!, 25%; Pu242, 25%.

Plutonium feed material containing also the higher isotopes is
referred to as "dirty." It is interesting to note that in a calculational



study(g) the so-called "dirty" plutonium used as fuel in a fast reactor re-
sulted in larger values of the breeding ratio.

The analogous Th®* build-up chain is shown in Fig. 7.(8)
U235

T(n,Y)

o EASCL  pw DG e ABeEnE Eiilo Sl
. 2 - o : - Nuclear Reactions under
T (n'gy; 5 y(n'% g T("';)szi w0y Neutron Irradiation of
Th233 ﬁ.- Pa 233 B.- U233 2 = Th232 (Ref. 8)
T (n,7)
Th232

For present discussion, the breeding ratio will be taken as

_ Quantity of fresh, thermally fissile fuel produced
B Quantity of primary thermally fissile fuel destroyed’

BR

and the distinction between conversion and breeding will not be adhered
to. The various definitions of breeding ratio are discussed in Ref. 10.

Considering that the amount of fertile material is much greater
than the amount of fissile materials in the Earth's crust, then in order
to insure complete conversion of all the fertile U?*® and TR gl breeding
ratio of one or greater must be obtained. If (BR) < 1, then by continued
burning up of previously bred fuel one would obtain but a limited utiliza-
tion of the Earth's resources. An atom of primary fissile material would
result in (BR) new fissile atoms. The latter when consumed would result
in (BR)? new fissile atoms, and so forth. The total atoms of fissile fuel
ultimately used would be

1+ (BR)+ (BR)?+.... = e

For each original fissile atom consumed, only

._1_ 1_ BR
1 - (BR) " 1-BR

atoms of fertile would have been transformed to fissile atoms.

For each atom of natural uranium, only about 0.007 atom are the
fissile U?3® species. Theoretically for complete burn-up, then,
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from which
BR =0.993 = 1.
A measure of the effectiveness of a given fissile material to con-

tribute its excess fission neutrons for fertile capture is 7] - 1 of the fissile
atom:

n s PR =
T
where
a = OC/Of.

A larger value of 7 - 1 is obtained with larger V and/or smaller a. Both
Y and @ are dependent upon the energy of the incident neutron. It turns
out that ¥ increases with energy. For example, for U235,(11)

v(E) = 2.43 + 0.115E up to 1.5 MeV,;

and

v(E)

2,406 + 0.138 Ej, from 1.5 MeV to 15 MeV.
In addition, although both 0. and Of decrease with increasing energy, the
ratio of OC/Uf over the spectrum of a fast reactor is smaller than that
over a thermal reactor.

Some approximate values of 7 - 1 are listed in Table III.

Table III

VALUES OF 7 - 1 FOR FISSILE MATERIALS IN
THERMAL AND FAST SYSTEMS

Thermal (2200 rn/s) Fast(12)
Uu23s 1,07(6) ~1.18
Pu??? 1.00(6) ~1.74
0t 1.29(6) ~1.42

The values for the fast spectrum are especially sensitive to the spectrum.



10

If allowance is made for possible processing losses, leakages, and
parasitic abéorptions, only the U2?3*_fueled thermal system would appear
attractive. The values of the fast
(n - 1) should in addition be aug-
mented by the ever-present fission
neutrons due to fast fission in ufE"

& : 232
e and to a smaller extent in Th®".
5 From the cross section versus
energy measurements,(13) the shape
0 ey for the fast fission process is roughly

sketched in Fig. 8. The fast spec-
trum is sufficiently high in energy
Fig. 8. General Features of that an appreciable portion of the
TisaionCionsSeetion flux is above the fast fission thresh-
of U (Not to Scale) old energies of the fertile materi-
als. This has been reported to
increase the BR > 2 for a fast Pu®®-U?® system.(15) In practice a ratio
~1.7 with Pu?®? fuel and ~1.2 with U?® fuel may be expected,(lz)

5 —=

Theoretically, neglecting losses, if BR = 1, the number of fission-
able nuclei existing at any time equals the number of original fissile
nuclei so that the total available fissile material at any time does not in-
crease. For a breeding gain G = (BR) - 1, the breeding ratio must be > 1.
An important quantity in this regard is the doubling time, D.T., which is
related to the gain:

critical mass in grams . critical mass in grams
grams fissile gained per day = (G) (grams fissile consumed per day)’

D'T'days

The fissile burn-up rate is related to the power and the capture-to-fission
ratio:

pwatts

(grams fissile consumed/day) = (1+a),

10°
from which

10°
s 3 e
days = Gpgatrs (1+ Q)
where p is the specific power in watts,(14) A large breeding ratio and a
large power density per unit mass of fissile material lead to small doubling
times. For completeness, the time for pProcessing and extracting the new
fuel, the amount of fuel held external to the reactor in reprocessing plants,

shutdown time, and the fraction of the power due to fast fissions in fertile
material must also be considered.(14,15)

The doubling time may then be
expressed as



1Ll

iiof
D.T.qays = GI(1-F)p(l1+ o)L’

where I is the ratio of reactor critical mass to total fuel in reactor and
hold-up outside of reactor, L is the fraction of time the reactor is in
operation, and F is the fraction of power due to fertile fast fissions. The
large fertile fast fission of fast reactors is conducive to lowering of
doubling time.

Another quantity of interest is the burnup. It is usually a fraction
equivalent to a couple of percent in fast systems. It may be defined as

atoms fissioned in the "fuel"
original atoms of fissile, fertile, and’
diluent materials in the "fuel"

Burnup =

The general or central problems of fast reactors arise from the
need for high power density per unit mass of fissile material. This results
in the need for high temperatures of operation, high heat-transfer rates
from fuel to coolant, and high burnup in order to minimize the high fuel
inventory holdup during reprocessing. High operating temperatures re-
quire thin or finely divided fuel to obtain better heat transfer. The Fermi
Fast Breeder Reactor, for example, has fuel pins 0.158 in. in diameter
and about 30 in. long.(16)

Coolants are required which cause negligible elastic moderation,
have good high-temperature heat transfer, and do not attack the cladding
materials of the fuels. The eutectic mixture NaK and the element sodium
have been found particularly good. In addition, they have relatively low
melting and high boiling temperatures.

Technological problems in fast reactors are discussed, for example,
in the text of Palmer and Platt.(15)

To reduce the costs of inventory, reprocessing and refabrication of
fuel,the problem of achieving high burnup is paramount. The high tempera-
tures, however, produce, through the increased pressure arising from the
internal accumulation of fission product gases, a swelling of fuel. The
importance of high burnup in fast reactors can be appreciated if one con-
siders that the density of fuel is greater by a factor of ten in a fast fuel
than in a thermal fuel element.

Because of radiation damage, removal of fuel elements may become
necessary when a couple of percent of fissionable and nonfissionable atoms
have burned up. At this time an amount of fuel about equal to the initial
fissile mass of a thermal reactor would be consumed, whereas this repre-
sents only of the order of 10% of the fuel in the fast reactor. Thus of the
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order of 10 reprocessings would be required for complete use of the
fuel.(17) Fuel burnup in a thermal system is more limited by the avail-
able excess reactivity to overcome fission product poisons. In a fast
system, because of the small cross sections of the poisons at high ener-
gies, the burnup is more limited by radiation damage.

Last, but perhaps not the least, is the question of the relative
safety merits of fast and thermal systems. This will be discussed in
more detail later. Suffice it to say that the potential greater hazards in
fast systems are usually related to the shorter prompt-neutron lifetime,
the possible loss of coolant (with possible attendant increase in reactivity
due to spectral shift effects), and/or radiation heating of the fuel elements
S0 as to possibly produce a super-critical meltdown configuration. There
exists also the possibility of resonance coupling of reactivity and power
in some cases.(18)
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III. MULTIGROUP METHOD

In the energy range of fast reactor spectra the variations of cross
sections with energy are sufficiently large that bulk treatment of large
energy regions in correspondence to, say, a four-factor formula has not
as yet been successful in practice. Methods of multigroup solutions of
transport or diffusion equations are used instead. As the dimensions of
fast reactor regions are not large relative to the mean free paths, i.e.,

a distance of a mean free path is an appreciable fraction of the regional
dimension, transport solutions are required for the smaller fast systems
and generally also for precise calculations on the larger fast systems.

Although not basically as accurate, the diffusion theory approxi-
mation is much used. Indeed, because of lack of cross-section information
the use of diffusion theory for all but very precise comparisons is usually
adequate except for the small systems.

Simplified two-group diffusion equations with transfer coefficients
coupling the groups are, for the case of thermal systems,(19)

D1V2<7>1 o Zal¢l -+ Sl = 0;

"
=

D, V%, - 22,92+ S,

The group sources are

S, = vig, 0,

and
SZ = Zal ¢1.

The thermal flux (¢,) produces the fission neutron sources of group one.
The fast flux group (¢;) produces the neutron sources in the thermal group
by moderation transfer of neutrons, i.e., Zal = 23,,;. Furthermore, the
relations between transfer coefficients and parameters entering the four-
factor formula through k, 1%, and T are

Dl DZ DZ
Zal = T; Zaz = _Z; szz = kmzaz = kw__z.
s L

In the case, for example, of a two-group analysis of fast systems,
the lower energy of the lower group need not be zero. Below some lower
energy limit the contribution to, for example, the reactivity is negligible.
Considerations of both capture and fission as well as the fractional dis-
tribution of the fission spectrum is necessary. The two group sources
would then be
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S) = X1 (¥2g)) &1+ Xa (vZg), ¢

and

S; = 2y O + Xp (V2g)2 $1 F Xz (VZ4) b2,
where X; and X, are the fractions of the fission spectrum,

Za

: ch + Zfl + ZI-’Z’
and
Zaz = ZCZ + Zfz f

The extension to J groups then follows. For each group J5 ithe
equation is of the form

Nl - e
D;Vi¢; Zaj<1>3+sJ 0,

where
j-1 i
= Y Ziej bit X > (¥Z; & +So;.
= i=1

Here S, is zero except in the case of applied sources. Also,

j
J
BT e 5+ D Bk
J J J k=j+1

A particularly simple solution, amenable also for hand computation,
is possible even with many groups in the case of a bare, homogeneous sys-
tem if it be assumed that extrapolation distances are equal in all groups.(5
By assuming that all groups satisfy the equation

2 2 =

Vies + BRG, = 0,
one may, by an iterative solution method, determine the group flux values
¢ ., and the value of B? for which neutron production equals neutron ab-

sorption plus leakage, i.e., kggs = 1.

Taking a group at a time and assuming an initial guess for B?, we
find

_D,BZ¢l _ zal¢>l ST =0



1:5

so that
q)l = Sl/(zal o DIBZ);

similarly,

The group sources are given by
J
5; = X Z ¢k+Zz Sy Pk = X4 Zraj P

from which

3
Z (Sl
o =_“—_: Z (vZg); ;-

The denominator is the initially assumed fission source distribution
whose value is taken as unity:

J
3

Another B? value is then chosen and the procedure repeated until kegs is
sufficiently close to unity. The material buckling, B2, may then be related
to the geometrical buckling of a bare homogeneous system having extrap-
olated dimensions. The relative magnitudes of the fluxes in each energy
group are also obtained.

In the middle of the central region of a multiregion reactor system
the spectrum should be close to that of the bare core.

As a simple example of the procedure and also to obtain a feel for
group cross sections, consider the following two-group parameters to
apply to the simple composition: 10% U?5 and 70% U?38,
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Assume atomic densities 0.048 in units of 10** and microscopic
cross sections given in Table IV. The homogenized macroscopic cross
sections are listed in Table V. If B? is guessed to be 0.005 cm'z, the
fluxes are calculated to be ¢1 = 5.07 and ¢y7 = 39.8. The kegs value is
1.005. For a value closer to unity, assume a somewhat larger B? value
and repeat the procedure.

Table IV

TWO-GROUP FAST CROSS SECTIONS
(IN BARNS) FOR U?** AND U?*®

23S y23s
Group I Vo, 3.44 1.48
1.35 MeV — 10 MeV
X, = 0.574 30tr, o o
Oa; 2.8 2.7
Ol-11 1.4 2.1
Group II vog, 8550 0
9.12 keV = 1.35 MeV
X, = 0.426 3 %tr, i =
Oa, 155 0.18
Table V
HOMOGENIZED TWO-GROUP
FAST CROSS SECTIONS
Group I (cm™) Group II (cm™?)
vZfl 0.0662 0.0168
324 0.538 0.792
23, 0.104 0.0142
20 D.07%7 0
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For the flux solutions in the various regions of a multigroup-
multiregion case, iterative energy and spatial methods of solution are

used.(20) Assume a fission source distribution, S}(T); and XJ-S‘%( T) as
the distribution in energy group j. Then,

Dy(T) V281 (F) - 25, (F) 1 (F) + Xa8E(F) = 0
is solved for ¢; (7). The approximate group-2 source, calculated by
Sa(T) = Z12(F) 61(F) + X258(F),

is employed analogously to obtain ®,(¥). Similarly, the group-3 source
approximation is

S3(T) = 213 (F) 1 (F) + 2,5(F) 02 (F) + Xas‘}(r),
etc.

By means of the calculated ¢j (T), the derived fission source
distribution

J
SHT) = D vEL(F);;(F)
j=1

may be compared with the initial, or previous, iteration, Sg(?). If
Si-(_r.) = S% (r) the system is critical. If

S}H(F)/S3(F) = constant £ 1,

the problem is solved and the system has kg¢f = S}(_I")/Sg(_r’). For further
adjustment to obtain criticality, changes in regional dimensions and/or
compositions are required and the procedure is repeated.
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IV. DIFFERENCE EQUATIONS

Numerical solutions of the multiregion-multigroup equations by
digital computers necessitate transformation of the spatially dependent,
coupled multigroup differential equations to a system of coupled differ-

ence equations. 21

For any energy group j of a given homogeneous region, the differ-
ential equation is

—
€

DjV2¢j(;) = zaj¢j(?) i Sj( ) = 0.

In spherical geometry one obtains

@yi(x)  Za; ) el
er DJ DJ ’

where ¥(r) = ¢(r)/r. The equation of each group is of the form

a2

_l(zr_) - k2y(r) + rJ(r) = 0.

dr

Consider a spherical system of two concentric regions. Define

Vn = Ve andd 5 = (),
where r, is the value of r at the n'th mesh point position, r, being the
center of the system. Assume constant mesh separation A; and A, in the

respective regions.

A difference expression for the Laplacian at a position r, within
a region is

a2y 1 ( Yt - z'[/n> < ¥n - wn-l) g Yn+1 - 2¥n t ¥noy
A ) A g e :

The quantity in the bracket is seen to be just the difference in derivatives
of § between the pairs of mesh points, r,_, to rp and rpy to r,y,. The dif-
ference equation of a given group and region is then of the form

Y4y - (€A% +2)y, + ooyt AZJn = 0.

A mode of difference solution(zo) for the spatial dependence, amen-
able to hand calculation, may be illustrated by considering a one-energy
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group, one-region example with a given spatially applied source distribu-
tion. The previous difference equation may be rewritten in the form

Yn#1 - K¥n t ¥y, + Tp = 0.

Given the source-dependent values of Ty, with n = 0,...,N, the problem is
to determine ¥, for n = 0,....,N. Further simplification of form for cal-
culational ease is possible. Let A, be the solution of the homogeneous
equation

wn+1 - kyn + 7pn-l il

Then
An(Ypp -k¥n+¥,_ ,+Tn) = 0
and
Un(Ap 4, -kAR+A ) = 0.
The difference of these two expressions,
(Yol - An¥p) + (B, ¥ - An¥, ) - AnTy = 0,
may then be expressed as

PRt

L= AnThn,

where
Pn = Ant¥n - An Yntr-

Assuming, then, a homogeneous slab, with zero-flux boundary con-
ditions and applied spatial source distribution, the problem is to find ¥y

subject to the conditions ¥, = Yy = 0.
Using the homogeneous equation

An+1 = kAq - An-l

with Ay = 0 by the boundary condition and with A; = 1 for ease, as the
value of latter quantity divides out in final answer for ¥,, calculate out-
wardly the An values from A,,...Ap.

Next, using the equation P, - I AT, with conditions Py = 0
by the boundary condition, obtain P,,...,P, by working outward.
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Finally, by employing the definition of Pp in the form

i Pn + An 1//n+l
& An+1

and applying the outer boundary condition ¥ = 0, work inward to obtain
e s R

For the case of a one-group multiregion problem the analysis pro-
ceeds similarly with, however, application of interface boundary conditions
of continuity of flux and current. For cases of source distributions which
are flux induced by, for example, the fission reaction, iterations of the
spatial flux and source distributions are carried out until shape conver-
gence is obtained.

The difference-expression formula for the current requires some
consideration. The difference expressions for Laplacian and gradient to-
gether with the formula used in the volume integrations over mesh points
must satisfy the divergence theorem:

f V- Voav =fE-$¢ds.
v S

In this manner there is assured that for any volume region and energy group
the neutron balance

T S f¢dV+/‘SdV

is satisfied. Naturally this, of course, does not mean that there are then
no errors in the difference formulations, but only that the neutron balance
is internally consistent. Having thus decided upon an expression for the
Laplacian (V?¢),, at a mesh point, it may be easily shown by use of the
divergence theorem that if, for example, the trapezoidal integration formula

ry B-1
~ fal fgA

fn(rn) dry = o + Z fnd + o
TA A+

is employed, the difference expression for the gradient at a mesh point
must be

g
(Vo), = <_LZA n ‘>



for the case of slab geometry, where A is the mesh point separation. For
the case of spherical geometry the gradient difference expression becomes

<d_¢_> 2 <?//n+1 7 wn—-l) &
ga. - T 20 - 2

The latter form may be seen directly by neglect of (A)? terms in the devel-
opment given in Ref. 20.

21
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V. GROUP PARAMETERS AND CROSS-SECTION DEFINITIONS

In the discussions of the multigroup method, nothing has ye.t been
said about procedures for evaluation of the multigroup cross-sgctmn .
parameters, i.e., given the energy dependence of the various microscopic
cross-section interactions, what is a possible procedure for obtaining the
homogenized (macroscopic) group cross section for a givenenergy interval.

Possible homogenized parameters for a diffusion theory calcula-

tion are

DJ-, group diffusion parameter

(v Zf)j, effective group value of v and the fissioncross sections
ch group capture cross section

Do group fission cross section

ZEIj»k’ elastic transfer cross section from group j to k
Zinj—»k' inelastic transfer cross section from group j to k.

The group total cross section, which is not generally used directly in dif-
fusion theory calculations, is

2 L= 2L F S B gk Fe
tota.lJ <5 fJ elJ 1nJ

where Zelj and Zip. include all elastic and inelastic scattering events oc-
curring in group j. The group scattering cross sections are related to the
transfer cross sections by the expressions

aetcs

201 = Zele st 2l E
elJ 813*) eIJ__J_‘_1 elJ_’J_{_2

and

Zin. = Zip, .t 2

5 STNRTE R > .. T ete.,
j T e el R R

where the j—j terms represent scattering which remain within the energy
interval of the group.

Assuming that a priori knowledge of $(E) within an energy group
is known, then, for example,



23

E:
Jupper
_/ 2. (E) ¢(E) dE
E.

Jlower

Jupper
¢(E) dE
E:

Jlower

where

() = ) N 6™ (),

Mmaterials

Here N™ is the atomic density (units of 10%* atoms per cm?®) of material m
present in the mixture, and 0.(E) is the microscopic cross section in
barns. The summation process is referred to as homogenization. With
such an averaging formula, the averaging can also precede the homogeniza-
tion summation.

It is seen that

&
T W o‘C“(E)> $(E) dE

E. m =
5 _ Jlower = Z N B
o
J g = j
Jupper
#(E) dE
E
Jlower
where
e
Jupper
¢(E) o.(E)dE
o? _ Jl;:)wer
J jupper
¢ (E) dE
Jlower

Clearly the microscopic group cross sections have greater usefulness in
that for reactor systems for which differences in corresponding intra-
group spectral weightings are not important, they may be directly used by
simple homogenization:
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Dl Sk S
J m J
Analogous averaging formulas may be used for the quantities

= Ototal.

PLE ) S o e Ol Gl T o TN, A O
( f)J fJ elJ in; el_]—»k in i

J—b
and others.

The detailed formula for ;) or Zj—»k for either elastic or in-
elastic cross sections is of the form

Ex
upper B-

Jupper ’ :
el or inel(E—E")$(E)dE |dE

k EJ‘lower

lower
O-_}k =
J Ej
upper
#(E)dE
Jlower

The group diffusion constant

S
PP <Z>(E)

D(E)dE
j1ower
e E; A
u i el
i #(E) dE
Jlower

rigorously cannot be analogously obtained by averaging before homogeniza-
tion because

D(E) = 1/32transport(E)’

where
Ztransport(E) = Z N 04, (E).
m

In practice, however, the reciprocals of the individual elements are
nevertheless often flux weighted with some assumed suitable intragroup
spectrum:
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/ Jupper (E) dE
E: Otr(E)

Jlower

= ’
tr Jupper
/ $(E)dE
E.

Jlower

Other microscopic group transport cross sections of the elements obtained
by formulas such as

1
m
S =

j <1>
m
g
trj

are subsequently homogenized:
m
2N G
m J

to obtain the macroscopic group transport cross section. The group diffu-
sion parameter of the mixture is then taken to be Dj = 1/3Ztr for diffusion-
theory calculations. Estimates of errors and dlscussmn of the difficulties
encountered in evaluation of averaged diffusion constants for groups are
given by Zweifel and Ball. 22) Further discussion of fast multigroup defi-
nitions may be found in Reactor Physics Constants.(8) Details of prepa-
ration of a multigroup set of cross sections are given by Yiftah, Okrent,

and Moldauer. 238)

As will be later discussed, the reciprocal averaging of microscopic
transport cross sections with subsequent homogenization can be especially
in error for cases of mixtures of resonance structure materials.

The flux averaging of cross sections (or reciprocal cross sections
for transport processes) is usually the averaging procedure employed to
obtain the group constants for multiregion multigroup analyses. It is, how-
ever, neither the only weighting procedure suggested nor employed, and
indeed in some cases, depending upon the reactor quantity calculated, it
may not be the correct weighting procedure. In some cases weightings
which consider also the adjoint may be preferable (see, for example,

Refs. 24 and 25).

Another source of error in the flux averaging of the reciprocal
transport cross section may arise if flux, ¢, and current, J, are not space
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and energy separable (see, for example, Ref. 22). In this case, even though
Z¢r(E) is independent of position in some region, Ztrj in the region may be
dependent upon position. This follows from

/ J(%,E) 2, (7,E)dE

roup j
Ztrj(r) = g P
f J(r,E)dE
group j

is independent of T only if S¢. = Z¢.(E) and if J(T,E) = Tx(r)IR(E),

D
trJ

i.e.}

f Ir(E) 3 (E)dE

5 _ “group j

(B
f Jg(E)dE
group j

From ¢(E,r) = ¢,(7)¢g(E) and Fick's law it follows that

A problem which frequently arises in multigroup calculations is
that of the reduction of a many-group set to an equivalent fewer-group set.
This may be necessitated inorder to reduce computational time or to allow
use of machine code programs which can employ at most a few groups.
The latter frequently arises in multidimensional analyses. This reduction
of groups is clearly related to the problems, just discussed, of the evalua-
tion of group parameters.

For the analytically simple case of the calculation of the multigroup
fluxes and the material buckling of a bare homogeneous system by diffusion
theory, the requirements on the reduction procedures are that the material
bucklings be unchanged (or keff if a geometrical buckling is assumed), that
the individual group fluxes of the reduced case equal the sum of the equiv-
alent group fluxes of the unreduced case, and that the reaction rates be
unchanged. It may be shown that flux weighting satisfies these require-
ments. The reduction formulae are analogous to the flux-weighted group
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evaluations previously discussed. Let J be the group designation of the
reduced set. Then, for example, the homogenized capture cross section
is given by

¢. 2
s )T
s _ JjinJ
cy Z 2
(o]
g J :

where ¢. are the calculated fine group fluxes and "j in J" means fine
groups comprising a coarse group J. The group transfer cross sections
from coarse group J to coarse group K are obtained from the formula

Yu D #iEiy

_jinJ kinK

K
Z ;

1) i ]

Z

The coarse-group diffusion constant is obtained from the equation

Z D; ¢>J-

jinJ

. %
jinJ

DJ=

If the transport cross section rather than diffusion constant is required as

a machine program input, then
Ztry = 1/3Djg.

In the event that it is desired to carry out an analysis in few-group
systems other than that used in the specific reduction weighting, the reduc-
tion of the microscopic fine-group cross sections to coarse groups has
practical advantages, although if the intracoarse-group spectra is too dif-
ferent then errors in coarse-group fluxes and material bucklings (or kegf
values) will not be negligible. Clearly, in addition, reduction of the recipro-
cals of the group microscopic transport cross sections of the fine groups
before homogenization can lead to errors in DJ in analogy to the previous

discussion.

An example of a flux spectral averaging and group-reduction code
is GaM-1.(26
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VI. TRANSPORT CROSS SECTION

Previously we have considered the question of the homogenization
of a mixture of materials. In particular we discussed the difficulties of the
homogenization of group microscopic transport cross sections of elements
to obtain the group macroscopic transport of mixtures.

The definition of transport cross section is closely related both to
the degree of accuracy desired in the flux solutions and to the mode of solu-
tion employed. These considerations are especially important in fast sys-
tems because anisotropy of elastic scattering occurs also in the center of
mass system. Furthermore, because the dimensions of the systems are
often such that a mean free path represents a significant distance relative
to the dimensions, transport methods of solution are frequently necessary.
In addition, because of the necessity for considering many neutron energy
groups, the question of the effect of reduction of group widths upon the def-
inition of the transport cross section becomes a consideration.

The one-dimensional, monoenergetic, steady-state Boltzmann equa-
tion with the scattering cross section and flux expanded in Legendre poly-
nomial series is

Ao (x, u) PN
U v TR CTTD R ; —— 25, P(r)¢y (x) + s(x),

where 1 is the cosine of the angle between the x-direction and the neutron
flux direction, and S(x) represents an isotropic source distribution. Recall
that

1
sy = / Zs(ko)P g (1o)d o,
Sl

where Zg(uo) is the scattering cross section in the laboratory system for
an incident and scattered neutron having direction cosine Ko, and that the
¢y (x) are related to the ¢(x, i) by the relation

o) - ﬁz# § ()P (0)

Information on angular distributions has in most cases confirmed the

compound-nucleus nature of inelastic scattering, i.e., in the center-of-mass
system the neutrons are isotropically scattered. The effect of angular dis-
tribution in the laboratory system of inelastically scattered neutrons can be



29

neglected, except for very light nuclei. For the energy range of fast neu-
trons it is important to consider both the elastic-scattering anisotropy in

the center-of-mass and the anisotropy due to transformation from the
center-of-mass to the laboratory system. Thus, although 2g can be con-
sidered replaceable by (v 3¢ + Jip + Ig) in practice 5g and 3jip are gener-
ally taken as isotropic, and only the anisotropic-containing elastic scattering,
2ig, need be considered in the argument to follow.

By consideration of terms/ =1 in the flux and flux gradient,

B, 1) = ¢°?_(X) +2 Bix)Pa()

and

1 doo(x) 3 dou(x)
"R, O +‘2' dx Pilp),

the transport equation becomes

do do >
v 0 3 1 Zitot 3
¥ e Calhee Py(u) + > ®o o Ziot P1P1(1)

i
= 0 7 5y SN P15,

where S (x) is assumed to be zero and where

+1
3, = f toZg(po) diwo = o Zg-
Ll

Multiplication by P, and integration over u, and subsequently by P; and

integration over él., give the two coupled differential equations of the P,
approxima.tion:(2 )

d¢;

s
e | tot Po= 2%

S

and

1Rdgn et =
Tt Ztot BT %, 4
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The assumed linear flux dependence thus require linear scattering informa-
tion, Furthermore, the coupled set reduces directly to the form of a coupled
set for the case of only isotropic scattering if in the latter set:

do, :

3t Ztot Po = Zsp o
and

1 90 >

S T otat i

there is substituted

* —
Ziot =~ Ztot = Stot = s, = Ztot - HoZs

and

Zso "Z:o = Zso ‘Zsl = 25 - Ho 2.

Usually Z’{ot is the definition of transport cross section used in con-
struction of multigroup parameters. The latter substitutions are referred
to as the "transport approximation." Clearly it contains sufficient aniso-
tropic cross-section information if flux solutions up to an accuracy of two
terms in the flux and current Legendre expansions are desired. In addition,
as is well-known, for the case of monoenergetic neutrons (one-group set)
the isotropic scattering P; equations reduce to the one-group diffusion
equations:

1 d? ¢
= = °+z:0t¢0'2);¢o:0-
33 dx?
tot

More explicitly,

1 d*g,
e i[5 -2 = 0.
Moor - MoZal ot | Lot0t = Zol o
As fast reactor analyses often require flux solutions of higher order
than the P; component, the question arises as to whether the transport ap-
proximation (i.e., P; in scattering) is or is not in practice sufficiently ac-

curate also if solutions having higher moments of flux and current are
desired.(28)



Furthermore, the general need for multigroups introduces the ques-
tion of the validity of the previous one-group definition of transport cross
section.

The corresponding multigroup P; flux and current equations obtain-
able from a multigroup form of the transport equation are

doj(x)
il 0 0 0
L o = S O
dx totj 5() Z sj1~ 95 &)
all i

and
| 49(x) ; ; -
= = e Gl = E 2 o ()
Sk e J( ) Sitr ¢J'(

all j'

The summation in the second equation is seen to include the anisotropic
scattering components transferred from other groups. Use of these multi-
group equations for this reason is referred to as the consistent P
approximation.(27'3o)

The corresponding multigroup equations for the case of isotropic
scattering are

1
d <Z>J.(X)

0 i, 0
g Ztotj (Z)J(x) 5 Z Zsj"’j ¢J.(x)
all j'

and

0
d¢j (x)

1 1
e =0
3 z’(‘.otj ¢j(x)

dx

The previous consistent P; multigroup equations can thus be brought into
the form of the above P, equations only if in the summation on the right side
of the second P; equation the anisotropic scattering transfer of other groups

is considered negligible, i.e., le.' . = 0 except for le. .. Then the form of
Jias I

the isotropic equations are obtained by the transport approximation

redefinitions:

i R e ST )
o £y 9

and

3k
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*

= = [T B D g
sj_.jl Zsjy_,j I“LOJ SJ J'x_]

In addition, there is then directly obtainable the multigroup diffusion equa-
tions of the form

1 dz(1>0 0 0
- = H(Z .-Z.)qﬁ.:Zz.*.a‘
3(Zt0tj -‘uojzs_j) e ( tOtJ SJ j SJ' j i

i'#i

The corresponding spherical geometry form of the multigroup con-
sistent P equations are given in Ref. 28.

Thus, transport-theory codes which assume only isotropic scattering
can be directly used, by use of the transport approximation, to solve the one-
group P; equations which give scalar fluxes identical to diffusion theory if the
transport approximation is also used in the diffusion theory solution. If only
up to linear scattering is important, then one-group transport-theory codes
which assume isotropic scattering can also be used to obtain higher-order
flux and current components than P;.

If multigroup transport-theory codes are used and isotropic scatter-
ing is assumed, the corresponding comments apply only if in addition the P;
scattering anisotropy into other groups is neglected.

If in an energy-dependent (multigroup) case the energy loss per col-
lision is large and/or if the group intervals are small, then the anisotropic
scattering into other groups cannot necessarily be a priori neglected. It
may be noted that in some recent multigroup reactor codes (Elmoe(30) and
Gam(?2 ) containing a very large number of very small energy intervals that
the anisotropic scattering into other groups is considered. These codes at
the present are, however, used primarily to obtain fine, detailed flux spectra
for cases of spatially independent spectra cases for subsequent use in calcu-
lation of fewer-group cross section sets for spatially dependent cases.

Pendlebury and Underhill(zs) have empirically looked into the ques-
tion of the adequacy of using either lower-order scattering-anisotropy infor-
mation or the transport approximation in transport calculations for higher-
order flux solutions. For a series of fast reactor calculations with scattering
anisotropy to lower groups neglected, they find that it is not necessary to
use £ > 5 in scattering information, and that either £ = 1 or the transport
approximation often give results of acceptable accuracy. For example, in
calculation of Godiva (the Los Alamos bare U%3 spherical critical) the per-
cent difference in use of the transport approximation relative to £ = 5 scat-
tering information is of the order of %% in radius with either an S; or Sy flux
solution by the SNG method. (S, and Sg are different orders of flux approxi-

mations as obtained by the SNG transport method of solution; this will be dis-
cussed in a subsequent section.)
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On the other hand, Joanou and Kazi,(zg) have reported that, although
errors in use of transport approximations are small for the bare sphere,
such errors are more appreciable for the reflected systems reported. In
some cases the differences between transport approximations and more ex-
act methods were quite significant.

A definition of the group transport cross section often used in trans-
port approximation with diffusion theory and with higher flux component cal-
culations by transport codes is

= ot Lar . P oINS . . (-1 ST S (G R=R T y
ST Tey T 9B T Yelig T Yingay ik %eljj ( /Jelj) Oin; ( ij)

i#k ifk

where the I are the average cosine of the scattering distribution in the
laboratory system. As the fast reactor materials are generally not very
light elements, the inelastic scattering is generally taken to be isotropic

in the laboratory system. Because the elastic scattering can be anisotropic
in the center-of-mass system at fast reactor energies, the scattering-
anisotropy constant [Ig] is retained. Then,

g, =0,+OFJ,+O'inj+Oel

trj cj 2 Fel- Oel;»

J J d

which is equivalent to the definition used by Yiftah et a._l.,(23) in their analysis
of a fast reactor cross-section set. The importance of elastic-scattering
anisotropy in other than very light elements can be seen in Table VI by com-
parisons of the values of 2/3A, for the case of isotropic center of mass scatter-
ing, with evaluated [ values at 0.5 MeV in the laboratory system.

Table VI
ELASTIC-SCATTERING ANISOTROPIES IN
THE LABORATORY SYSTEM COMPARED

WITH VALUES OF 2/3A

(Zat 0.5 MeV from Ref. 28)

Material 10] Fe C
2/3A 0.0028 0.012 0.056
T 0.315 0 201 0.056

The large dependence of [T upon neutron energy is evident when one considers
that in going from E = 0.5 MeV to 2.0 MeV to 4.0 MeV in the case of carbon
that I goes from 0.056 to 0.200 to 0.032 (T values from Ref. 28).
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VII, TRANSPORT SOLUTIONS BY DISCRETE ORDINATE METHODS

Large digital computers have increased the application of discrete
ordinate methods of solution of the transport equation. Familiarity with the
method of spherical harmonics(27) is assumed so that correspondence of
the two types of solutions can be made.

The two aspects of particular interest and both basic in solution by
discrete ordinate methods are:

(1) determination of the angular distribution of the flux by solution
of the transport equation for various particular directions;

(2) integration of the angular flux, to obtain the scalar flux, by a
method of numerical quadrature wherein a weighted summation replaces
the integration.

The slab-geometry, one-dimensional, monoenergetic, transport
equation with isotropic scattering and isotropic sources is

a¢ 1 +1
g Rep) +Z20(xp) =25 @ (x, u)du + S(x).

-1

The "di(52c7sete direction" methods stem from the Wick-Chandrasekhar

method in which the set of k equations for discrete directions, j}, of
the form
d¢ Z
#kg(x’ Bi) + Z(x,uq) = Z g de)(x,;.tk)

all k

replaces the previous equation and where the original angular integral of
the transport equation

+1
f LABLTE N ST}

1

wherein the quadrature parameters Rk and [k are those of the Gaussian
quadrature formula. Recall that the latter means that the Uk are (L+1)

in number and are the roots of the PL+; (1) = 0 in the L'th approximation,
The weights Rk are also (L + 1) in number and may be obtained from solution
of the (L+1) linear equations(31)
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For example, if the L = 1 parameters are desired, then P,(u) = 0 for
3 = +0.577 and p, = -0.577, and the weights follow from simultaneous
solution of the pair

PE=SRy R

o
1]

0.577 R; -0.577 R;,
from which R; = R, = 1.

For the case L = 7, there are four positive and four negative di-
rections, and eight weights. The parameters are approximately(31)

I,uk| —N0N9 e 0N 79 RONE 26N and 0L 183
with
Ryc = 0,101, 0.222, 0.314 and 0:363,

respectively.

The scalar flux in the slab obtainable by the Wick-Chandrasekhar
method with Gaussian quadrature weights and directions can be shown to be
identical with that obtainable by use of the spherical harmonics solution of
order PL.(32) In a similar manner, the use of double Gaussian quadrature
in the intervals u = 0tol and K= -1 to 0 is the analog of the double spher-
ical harmonics method of Yvon.(27) It is especially useful in cases of angu-
lar flux discontinuity at p= 0, as is frequently encountered in slab-
geometry cells. For comparison the 8-angle double Gaussian quadratue
parameters are approximately(33)

lr,ukl = 0.931, 0.670, 0.330, and 0.0694
with
Ry = NI 74 N08 26,00, 3260 and 0.1 74,

respectively. This corresponds to a Yvon double P;.
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Many quadrature formulas exist. In the Westinghouse "RANCH"
Code,(34) for example, one may either use the internally available double
Gauss parameters up to 12 angles or supply any other quadrature param-
eters as input. RANCH is a one-energy group IBM-704 transport code in
slab geometry using a discrete method.

The one-dimensional multigroup transport codes which have been
much used are the Los Alamos SNG(35) and DSN(36 codes. They enable
transport solutions of various approximations for sphere, slab, and infinite-
cylinder geometries. The SNG code preceded the DSN (Discrete SN) code.
Neither code is, however, strictly a discrete ordinate solution in the sense
of the Wick equation. Both utilize the technique of dividing the | space into
finite directions having definite weights. The manner of arriving at the
quadrature formulae differ, and the handling of the directions in the trans-
port equation differ. In this regard the DSN code is closer to the discrete
ordinate method.

The SNG method divides u = -1 to +1 into equal Ay intervals. The
approximation Sg has 6 divisions and 7 directions. The angular flux distri-
bution between these directions is generally assumed linear in . Two of
the directions are always (= +1 and -1 and, generally, u =0 is also a
direction.

Consider the one-dimensional spherical case. The angular flux
¢(r,u) between uj-; and Kj is then

u-uj-l} i
L T e [—]cb(r,u-_)
[“j'“j-l s TR I

¢ (r,p)

=5 [l - 1y @ (o) + (j-p)olr.pjo)l,

where n is the number of equal Ay intervals in region -1= § = + 1. The
integral for the total flux is then

n

H;
f (-})[(u—uj_l)dﬁr. ) + (B5 -1 )9 (x, uj_l)]du

151
1

o(r) =7[ B(r,u) du =
J-1 M

| =
i



Thus the assumption of equal intervals and linearity within intervals lead
to a quadrature formula having equal weighted interval directions and
half-weighted end points.

The group spatial differential equation is written as

0 il = e
L R
(v + s = 25) 631 = S5x),

where it is understood that Sj(r) includes also the scattering sources within
group j and transferred into group j. Insertion of the linearity flux func-
tion between p._ | and Kj and integration out of the u dependence by inte-
gration from u;_, to Kj give a set of n nonpartial differential equations
for each group. The latter equations are coupled by the directions p.j_l
and K- Thus, for one of the groups,

d+bj+z ( )+‘d bj+2 o( =S (he)
ST ey L e e I By b om2aile

where the constants are functions only of the Au interval endpoints.

1
(The factor 2 results fromf du = 2).
-1

The n + ldirectionis that corresponding to ¢ = -1, and the solution
is obtained directly from the transport equation

(_ dd_r + 2) ¢(r,-1) = S(r)

for each group. Thus, in the n-approximation there are n + 1 angular flux
directions obtained.

It is evident that because of the assumption of linearity between these
directions, in the case of problems having solutions with complete linearity
in the interval -1 to +1 then the same scalar flux as given by diffusion theory
is obtained. Thus, for problems in which diffusion theory gives accurate
scalar flux solutions, the SNG method gives identical results in S, and all

higher approximations.

Though not shown here, in the SNG method the equations of neutron
balance are conserved.\37

Comparisons of critical core radius calculations by the transport
approximation with S, and diffusion theory have been reported 5) for a
series of fast systems. The multigroup analyses are reproduced in Fig. 9.
It is noted that diffusion theory, because of greater calculated leakage, lead

37
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to larger radii for criticality relative to S;. It should be remembered that
errors in radii must be multiplied by factor three to estimate critical mass
errors and that variations from the curve can occur depending upon the
composition and configuration of a critical system. It may be possible in
some instances that diffusion theory may lead to smaller core sizes if, for
example, a reflector significantly modifies the spectrum toward larger
reactivities.

1.3 [ I [ I T
Rl ot
o T, )
(=Y
@ 5 Ul Ratio of Critical Radii (Diffusion
BB Theory to S; Method)as a Func-
AT tion of Critical Radius by S,

L L Method (from Ref. 5)

0 20 40 60

CRITICAL RADIUS (Sy METHOD), cm

A comparison of various orders of SNG approximations have been
reported(38) for a solid plutonium sphere assembly. The percent error in
critical radius is shown in Fig. 10. It is noted that with higher SNG ap-
proximations the calculated critical masses increase. Yiftah et al., have
calculated the Los Alamos Popsy assembly with both S; and Sg. Popsy is
essentially a 4.5-cm-radius plutonium core with 9.5-in. natural uranium
reflector. The approximation S; gave 5.03 kg for the critical mass whereas
Sg gave 5.18 kg. In other words S, gave a mass smaller by about 3%, which
indicates a radius smaller by about 1%. For comparison, however, the ex-
perimental mass is about 5.78 kg.
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10-GROUP
CALCULATION

Fig. 10

Relative Percent Error in Critical
Radius as a Function of SNG Option
(from Ref. 38)
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VIII. DISCRETE Sy (DSN) METHOD

The question might be raised as to why have the DSN method when
so much of what is desired is apparently fulfilled by the SNG method.

The SNG method was believed to be somewhat strict in its initial
assumption of linearity. A reason then was to see if a method based on
more general and less stringent initial assumptions would lead to a simple
and more flexible method of solution. Furthermore, some practical dif-
ficulties have also been observed with the SNG; for example, the flux
solutions for thin-slab cells have in some instances been unsymmetrical,
In addition, the presence of the direction 4 = 0 may give rise to conver-
gence difficulties incases of important tangential flux-discontinuity effects.

It might also be asked: why not just use the Wick method previously
referred to? It was quite general and need not necessarily be restricted
to Gaussian quadrature. The reason is largely the difficulty in practice
for the cases of non-slab geometries as, for example, spherical,to handle
accurately by difference methods the term

1 - p? 3¢
S e
o (r, 1)
by means of the ¢k(r,pk) of the Wick method. The SNG method circum-
vents this difficulty by the integration over the Al ; intervals assuming
linearity in U and subsequently operating with the angular fluxes at the
end points of the Ap.

The following development argument of the DSN method follows
essentially that given by Carlson and Bell.(37)

In the DSN method an assumed form,

d . Pk Lo@
<aka—r+r—+2> (r, hy) + <aka;'—r—+ 2> ®(x, pe_,) = 25(x),

similar to that obtained in the SNG method, is taken. The parameters
ay, bk, and @y are not defined. The equation is transformed into a form
having a smaller number of parameters. The [} and [y _, again signify
a priori chosen end points of chosen Al intervals. In addition, values
of ,Uk are also a priori chosen, such that

Py = Py = By

The previous equation may be re-written as
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Pk
[akj—f(r,#k) + Ek% (r:“k-l)} +r_ l:¢(r:“k) s ¢(rﬂu‘k—l):|

b
+ Z|:<l>(r,l-ik) + ¢(r,#k_1)] = Z'rﬁ #r, pye_,) = 28(x)

by addition and subtraction of bk/r on the left side. The argument is that
more generally the equation may take the form

d e 7). 2k
A (1) + o 0l ) + B0( ) - 2 Bl ,) = S,

where Al = [Ii.. [l is the chosen discrete direction between U} _, and
Kk, and By is obtained by imposing the property of neutron conservation.
Neutron conservation requires that for each energy group the equation

(£+%>J(r) + S¢(x) = ()

holds, where the group current is given by

I(x) =—; i (& )y P O(r, By)
k=1

and the scaler flux is given by

M

) =5 ) (Bl BTy,

k=1

In this manner it was determined that

n
e 2 o 1 —
B = o | e 2 — AI_L m .
L k (/J'k - /‘Lk-l) = 2 ( )k k

The [k are the chosen k'th discrete directions, and the (Apu)

' k is the quad-
rature weight chosen for the k'th ordinate.

ATo start the angular iterative process for a group @(r,Hyx_,) for
LSS L ale s el o)l = Ol =10, e el from the original group trans -
port equation with U = -1:
o¢ -
-5 (r, -1) + 2¢(x, -1) = S(z).
or
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From ¢(r, -1) is then obtained ¢(r, [1;) by means of the DSN equation. A
linear extrapolation,

®(xr, W) = (M - L ¢(r’ﬁk—1)’

is then used to obtain the spatial distribution of the angular flux at the
right end point of the (A (); angular interval for subsequent use in the DSN
formula, etc.

Although the method may use any quadrature formula, from the
point of view of neutron migration it is satisfying if the group scalar
fluxes obtained by all orders of approximation of the DSN method result
in the same fluxes as given by diffusion theory for problems in which
diffusion theory is adequate. Recall that SNG satisfied this requirement
automatically through choice of linearity of angular flux between interval
endpoints. Considering that with linearity of angular flux, as required by
diffusion theory, ¢(u) ~ 4, then the current is

il
-1 2 L
J_Z,/: lJ'le'_3J

which places a requirement on initial choice of quadratures or an ad-
justment of quadrature parameters in DSN so that analogously

s 1
% kz; (& phe () = 5

In the DSN codes as often used the (A L)k intervals (weights) are
chosen equal and even in number. The KUy (discrete directions) are chosen
approximately to be at the midpoints of the (A ()x. Theydeviate fromthe exact
midpoints by some small common factor which is analytically determined
so as to insure the previous desirable correspondence with diffusion theory.
For example, for the S, sphere case, the Uy values(39) are -0.7745966,
-0.2581989, +0.2581989, and +0.7745966, which are seen to differ from the
exact midpoint values -0.75, -0.25, +0.25, and +0.75 by a factor ~1 0328%

Another modification to insure the 1/3 current factor has been the
use of a constant small incremental shift in the midpoint positions.(37)

It is informative to briefly list here some of the usual problem
types solved by the DSN method. As normally coded, it is applicable to
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n = 2,4,6,8, or 16-order approximations in plane, infinite cylinder, and
spherical geometries. Adjoint solutions are also obtainable.

1. Obtain keff, given dimensions and compositions.

2. Obtain concentrations of specified materials for criticality,
given dimensions and compositions.

3. Obtain dimensions of particular regions for criticality, given
dimensions and compositions.

4, Obtain the exponential rate () on the assumption that the flux
is separable with respect to time, with time variation exp (at).

Among options, various boundary conditions may be imposed at the
central and outer boundaries. Outer boundary condition options are zero
inward flow, perfect reflection, and slab periodicity. For slabs there are
on the inner (left) boundary in addition to perfect reflection also the free-
boundary and periodic-boundary conditions. "Periodic boundary" denotes
the condition where the angular distribution at one slab boundary equals

the angular distribution at the other slab boundary as required in some
slab-cell calculations.

A 2-dimensional DSN program is TDC for R-Z geometry
calculations.(36,37)
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IX. By METHOD AND ASYMPTOTIC DIFFUSION THEORY

During discussion of multigroup diffusion theory it was noted that
in the event that the system is bare and homogeneous, analysis of ma-
terial buckling and flux could be rather simply carried out even by hand.
Furthermore, as discussed, the transport approximation can be used in
case of linear scattering, subject, of course, to the assumption that
anisotropic scattering into other groups can be neglected. In both the
P, approximation and in the corresponding diffusion-theory solutions,
only angular flux distributions up to linear anisotropy are accounted for.
Situations arise, however, in which flux anisotropy higher than linear
must be considered even though the assumption of linear scattering may
be sufficient. These considerations lead to the so-called consistent B,
and B, approximations(40) in analogy with the consistent P, and P, approx-
imations. Corresponding to the analysis of fundamental (normal) mode
diffusion theory there is obtained an analysis by fundamental mode as-
ymptotic diffusion theory.(5x30) The latter is a solution which contains all
orders of flux anisotropy in the solution of the scalar flux. Important for
fast reactor multigroup analyses is that the group scalar fluxes and ma-
terial bucklings may be more accurately obtained for the central regions,
assuming of course that the cross-section parameters are sufficiently
well-known.

The one-dimensional, monoenergetic, slab-geometry, transport
equation is

3 x
#gf—:(x,u) 3 SlelEe ) = fzs(u‘ - ) p(x,u') dp' +S(2—),

where ¢(x,[)dy is the flux between U and di, and S(x) is assumed to be
isotropic in the laboratory system.

Rather than expanding ¢ and 25 in Legendre series, the Fourier
transforms

+Q)
Bl = — #x, 1) eiB¥ ax,
V2T Jie

+OO
3 1 iBx
S(B) = — S(x dx,

- A2 ‘/—‘oo . o



iBx

+00
1 i z
R e B, e B
B (x, 1) i f_m ?(B, p)

and

are employed.

Multiplication of the transport equation by eiBX and integration of
all terms between -o and +® with respect to x give

T d¢ o
W f eiBx o (%, ) dx + 3 f elBX g(x, u) dx =
X

-00

i T s
f Zg(p' — #)f eiBx ¢(x, u')dxdp' +f Zx eiBx dx.
/l‘ -0 -0

By integration by parts of the first integral and expressing in terms of
transforms, the equation may be cast in the form

il iuB = S(B)
ZHBp) |1 -——| = st(#‘ - i) (B, pu')dpu +—(2—-
‘LLI
Assume isotropic scattering in the laboratory system, i.e., for B,
approximation, which is the case presently of interest. Hence, substituting

and

_ et
¢, (B) = / #(B,u')du

into the previous equation and then dividing by the quantity in brackets gives



2[1 %E] 2[1 : ‘“B]

Insertion of the Legendre expansion,

36,0 = ), 2L Fum)e ),

into the left side of the equation, multiplication of both sides by P; (,u), and

integration with respect to U give

+1 o
Zf [ Z — - _(B)Pg(fi)]d,u =

ik

7L e L I R DR
Zg "ol 7 / TuBy H ?f T
(1 T) % (1 "3 )

-1

As only the j'th integrated term is non-zero, the ¢ (B) of the B, approxi-

mation is

Z8,(8) = [25%(8) +5(3)] ;6

where
o ARG i
oy e (1 i#B) g
z
(The corresponding coefficients for the B,, approximation are
given by

TP (u) P (1)
A. :Lf _.;1&_ du,
3.k 2 iuB

- (l i )

where 4 = n.)
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$o(B), which is the transform of the scalar flux, is then obtained
from

Z(5()(B) = 23 6O(B)Aoo +E(B)Aoo,

which may be written explicitly as

for

B
AOO = % tan'l(-z—).

In terms of absorption cross section 2 A = X - g, the previous expression
for ¢,(B) takes the form

B(B) = 2]
A Bl - 2
iz A==

The above is the asymptotic diffusion-theory equation, and the quantity in
brackets is the asymptotic transport leakage term corresponding to Bz/3Z
of diffusion theory, where B? is the buckling.(5,30) In cases where B? is
negative (i.e., ko, < 1), then 4/-B2 = iB and the bracketed expression con-
tains tanh”! rather than tan™!. Negative B? are encountered, for example,
in the calculation of the equilibrium spectrum in natural uranium and in
fast reactor blankets sufficiently distant from core neutron sources.

For small values of B/Z,
tan™! 2
=
>

so that

B3 B°

- —_—  —

gur G

e

S
s

- Ztan'l(£> .
lim [— \/ [ B"

B 35"
270l =)
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Application of asymptotic diffusion theory to the case of linear
scattering may be made by substitution of transport cross section for the
total cross section.

Extension of asymptotic theory to multigroup fundamental mode
analyses for spectral and buckling analyses is evident by analogy with the
previously described diffusion-theory normal-mode calculations.

As an example of the method and to indicate the order of magnitude
of the deviations between diffusion theory and asymptotic diffusion theory,
the two-group numeral example of Section III will be recalculated with use
of the previously obtained B-value from diffusion theory in the asymptotic
equations:

B v £ 0.006cm™, Bpp 2 0.0733 cm™’

Group I
BZ BZ
B, D 5T 4 B?
—= 0. e - — =-]= 0.00880.
3T, 0.00929 IT (1 5 52

Hence, for Group I diffusion theory gives about 4% more leakage in this
case.

Group II
B2 & 2
4 B
el Ot 0.00631, _D.T. (1 s _Z-> =0 0nb19Y

Hence, for Group II diffusion theory gives about 2% more leakage in this
case.

The calculated asymptotic diffusion group fluxes are ® = 5.09 and
B, = 40.1. Also, kegr = 1.011 with the assumed Bp T, = 0.0733 cm™.
Comparison with kD-fT- = 1.005, obtained with use of the same buckling,
shows that the result of diffusion theory corresponds to about 0.6% less
reactivity than is obtained by the asymptotic method.

It may be noted that the normal-mode, many-group ELMOE(30) and
GAM<26) codes, whose group intervals are quite narrow, contain consistent
B, options which allow for linear scattering, including anisotropic scatter-
ing to other groups.
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Use of normal-mode calculations arises also in connection with the
calculation of reflector savings. The difference of reflected core radius
and extrapolated bare core radius derived from asymptotic-theory material-
buckling calculations, for consistency, should be based upon, for example,
a DSN reflected core calculation having a sufficiently high-order angular flux
approximation. The scattering anisotropy in both the normal-mode and
the DSN calculation should be equivalent, i.e., both isotropic or bothlinearly
anisotropic, employing the transport approximation.
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X. EQUILIBRIUM SPECTRUM AND FAST DIFFUSION LENGTH

Comparison of calculated integral quantities with corresponding
experimental measurements is one means of checking in a gross manner
the validity of a multigroup cross-section set. Some integral measurements
are critical mass, detector foil activations, fission detector rates, re-
activity effects of material replacements both local and uniform, and
prompt-neutron lifetime.(8,41)

As an example of a comparison of calculation with experiment, a
choice of particular interest, both from the point of view of a check on U8
cross sections and because it represents integral measurements on a sys-
tem having ke < 1, is the Snell block experiment.(42) Analytically, it illus-
trates also the use of normal-mode calculation for negative BZ.

The Snell experiment consists of a very large block of natural ura-
nium into one face of which neutrons diffuse from a source such as a
reactor thermal column. Within some distance into the block the initial
neutrons are essentially absorbed. The fission absorptions in the natural
uranium block produce fission spectrum sources. The neutrons from the
latter sources then undergo the various fission, capture, slowing-down,
and diffusion processes as determined by the various cross sections of
natural uranium.

At a sufficiently large distance into the block the flux spectrum be-
comes independent of position. The fission source distribution and the flux
distribution in space are such then of the form eiBx, where B is imag-
inary, i.e., e-|B|X, assuming that block is of infinite extent in the radial
directions. The spectrum is then referred to as an equilibrium spectrum,
and L = I/IBI is called the fast diffusion or relaxation length.

Measured relative responses of various detectors allow estimates
of the equilibrium spectrum. Traverses of detectors through regions of
the block having the equilibrium spectrum enable measurement of the
fast diffusion length.

From the point of view of fast reactor physics the comparison of
measured and calculated values of fast diffusion length is instructive. It is
a quantity especially sensitive to the transport and capture cross sections,
as well as to the inelastic-scattering matrix.

Measurements with depleted uranium have been reported by Russian
investigators.(43)

In a natural uranium blanket surrounding a reactor core the flux
spectrum approaches equilibrium at large distances from the core. Exper-

iments of this type have been reported by the British for the blanket of the
fast reactor Zephyr.(44)
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With a spatial distribution of the form e~ IBI X, the multigroup
normal-mode analysis may be used. Either the group leakage term
= |B2|/32tr- or the more accurate leakage term of the By method with
transport épproximation,

15}
[tanh'l (I8] Ztr;) - Ztrj:l’

is used. The successive group fluxes are calculated, followed by iteration
by varying |B| until convergence. Convergence in this case is determined
when the relative levels of the group fluxes are such that the neutron flow
into a unit volume plus the fission sources produced in the unit volume
equals the total absorptions in the unit volume.

A recently reported measurement of relaxation length,9.17 + 0.18 cm,
is that of Chezem.(42) An Oak Ridge value(45) is 9.6 cm and an Argonne
measurement(46) has given 10.0 £ 0.2 cm.

Yiftah et a_l.,(23) have calculated a value of 8.86 cm, which is low
relative to the experimental values, as is also a previously calculated
value of 8.5 cm by Meneghetti et al.(47)

It is instructive to note that the latter investigators obtained
previously the calculated value of 9.9 cm. Availability of newer inelastic
scattering data, however, resulted in the subsequently calculated lower
value of 8.5 cm. This illustrates an example of the sensitivity, in certain
cases, of integral quantities to cross-section parameters. In this case,
it shows the sensitivity of L to the inelastic-scattering matrix.



XI. RESONANCE SCATTERING EFFECTS ON GROUP PARAMETERS

In averaging cross sections over the energy interval of a group,
some assumption is made as to the $(E) within the group. Generally, at
very high energies this is assumed to be a fission source distribution. At
energies on the high side of the flux maximum and on the low side of the
flux maximum, suitable smooth decreasing and increasing functions of en-
ergy are used., In the energy region of the maximum, a constant flux weight
is often assumed. After an initial calculation a smooth curve may be drawn
through the flux-distribution histogram obtained from the group fluxes to
obtain an improved gross spectral shape for intragroup weightings.

If a large number of groups having very small group intervals are
used, the question of the intragroup flux distribution generally becomes un-
important. The group widths (AE)j, however, are not generally chosen to
be so small that the elastic-scattering moderation into lower groups than

into the adjacent lowest group need be considered. This restriction reduces

considerably the parameters required. If the heavy fuel and fertile mate-
rials are the predominant materials in the system, this restriction intro-
duces negligible error.

If considerable amounts of intermediate and lighter materials are
present, such as the common diluents and structural materials: iron,
sodium, and aluminum, this restriction can introduce errors if a priori
improved intragroup ¢j(E) are not used in the weighted averaging of the
group cross sections(30) This difficulty does not arise because of the
greater moderating effect, but because of the prominent resonance scatter-
ing characteristics of these materials in the fast energy range from a few
kilovolts to the MeV region, especially below ~0.5 MeV. The evaluations of
group-transport and group elastic-transfer cross sections must consider
these detailed resonances.

Consider that the group energy interval AEj contains resonances.
As an idealization, consider that the energy region of interest is sufficiently
removed from the Placzek function effects due to fission and inelastic scat-
tering sources at higher energies. The cross section in the group is as-
sumed to be that of pure elastic scattering. As

1 P (E)

L) 5 Al oy ¢(E) dE
(C’tr 1 Jagy TelE) AE

where

otr(E) = og(E)(1 - 1)

and as the collision density is constant per unit lethargy,



E$(E)og(E) = const.,

so that
o) = B

then
S P IRy,
(otr>j AE Edg (E)[1-H(E)] AE, Eog(E)

Now, in a fast reactor the envelope of the low-energy side of the
spectral distribution does not vary as I/E; in fact, neglecting the fine flux
variations due to resonances, the envelope decreases with decreasing
energy. If the group increment AE. is, however, not large relative to the
smoothed-out envelope, but large compared with the widths of resonances
within AEj, then the envelope variation is negligible and

FID ____dE dE
<0tr>j B AEj Osz (E)[1 - K(E)] AEj os(E)

The contributions of the resonances to the group transport cross section
are diminished due to the diminished flux magnitudes at the resonances.

In practice, not only must other cross sections be considered, but
also cross sections of the other materials present, and in particular the
resonance cross sections of other scattering materials. Strictly, then,
homogenization should precede the averaging evaluation. In general, if
resonance effects are not considered in the detailed $(E) weighting function
within the group, but are considered in the transport cross section Otr(E)
within the group, the group transport cross section will tend to be excessive.

Hummel and Rago at Argonne have developed the ELMOE code, (30)
an IBM-704 program, in an attempt to carry out proper averages of group
cross sections for transport and elastic transfer. (Clearly the positions
of resonances relative to the end points of the group interval are important
in the evaulations of the transfer of neutrons out of the interval.) They em-
ploy many hundreds of very narrow subgroups to cover the whole energy
range of interest in the system, including a detailed elastic-scattering
matrix and details of resonances. The normal-mode analysis is by the
simple diffusion, consistent P;, or consistent B; method.

An example of the effect of detailed resonance consideration on
values of group cross sections are shown in Table VII. Listed are the ratios
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of ELMOE-modified to unmodified Yiftah et a_l.,(23) cross sections for
aluminum in a predominantly aluminum diluent critical assembly and for
stainless steel in a stainless steel diluent critical assembly. (48)

Table VII

RATIO OF MODIFIED TO UNMODIFIED CROSS SECTIONS
FOR ALUMINUM AND FOR STAINLESS STEEL

(From Ref. 48)

Ratio
Lower
Energy | Energy Aluminum Stainless Steel
Group |of Group
(MeV) T Elastic Elastic
TanspoTt Transfer Lanepoes Transfer
1 3.668 (G (1) (1) (1)
2 2.225 0.83 Tt 0.86 0.81
3 il 2)f53 (0].%)5; 1825 0,81 1.14
= OY825 0.85 %02 0.91 1503
5 (0)555) 0.945 a0l 0E95 .01
6 0.3 0.94 1.02 0.86 0.78
7 0.18 0.76 0595 0:94 1203
8 0.11 0.61 0.84 0.84 099
9 0.67 0.475 0.61 0.64 0.80
10 0.0407 0.67 0.68 (0o ls) D95
i 0025 0.24 0.36 0.49 0575
12 (051015} 1.07 1.00 0.67 073
11,5 0.0091 097 1.00 0.98 0.98
14 0.0055 (1) (1) (1) (1)
15 0.0021 (1) (1) (1) (1)
16 0.0005 (1) (1) (1) (1)

aIndicates no ELMOE calculation for these groups.

In a calculational study(48) of a series of ZPR-III fast critical as-
semblies, Meneghetti concluded that use of the simple P-1 ELMOE-
averaging corrections leads to critical mass values ~5 to 10% greater than
those calculated from the direct, Yiftah et al., set of cross sections.

As the ELMOE code is a fundamental-mode analysis, the question
of resonance effects in the outer region of a core and in a blanket region is
not, however, directly resolved.

Assuming that the transport cross section is properly resonance
averaged, the following trends given by Hummel and Rago(30) illustrate
the effects of interrelation of cross sections:
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(a) The presence of increasing amounts of U?*® and U?*® tends to
increase effective transport cross sections, since these elements add a
constant transport cross section to a mixture which fills in low places in
the resonance scattering cross sections. Such regions have a high weight
in the I/Z tr averaging process because of flux rise at these points,

(b) Increasing amounts of a single light element tend to decrease
the transport cross section of that element for the same reason.

(c) A mixture of light elements tends to lead to higher apparent
transport cross sections for the individual elements, because the minima
in the cross section of a given element are usually filled in by other
elements,



XII. MULTIGROUP ADJOINT FLUX AND
PERTURBATION ANALYSIS

Although familiarity with the adjoint concept is assumed, a brief
review with emphasis on the multigroup formulation will be presented.
The adjoint fluxes can enter into calculation of quantities such as effective
delayed-neutron fraction, neutron lifetime, reactor period, and material-
replacement effects. Calculation of these quantities in fast reactor anal-
yses is generally by multigroup methods. The comparisons of results of
calculations of these integral quantities with experimental results judge
the reliability of cross-section parameters, methods of calculations, and,
at times, even the reliability of experimental data.

The N-energy group diffusion equation with downward transfer co-
efficients may be written (for example, see Ref. 8) as

N k=j-1
v . Ve . . X ol . = 0;
o) BT R SR z PO Z ij Pk
k=1 k=1

where 0,. is the sum of group capture and fission cross sections, O;
is the transfer cross section out of the group, 0y, ; is the transfer
cross section from group k to group j, and X: is the fraction of the fis-
sion spectrum in group j (assumed identical for all fissionable isotopes).
The 0's are here to be understood as homogenized, microscopic cross
sections.

—

As is known, the set of equations may be expressed as a matrix
equation (M)(¢) = 0 where () is the column vector consisting of the com-
ponents ¢:. The corresponding adjoint equation for the adjoint flux,
(M+)(¢+) = 0, is directly obtainable by interchange of rows and columns
of (M) to form (M"').(49

Thus, with two groups,

DRVEADT 0a,h -0, Xy (vog) & + Xy (vop), 8, = O

and

D, V¢, - Oa, ®2 + X, (vog), &, + Xz(vof)z s 05 0

may be written in matrix form as

55
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(DY RS, X, voy,) (X, vog,) ®,

1—

2
(Xpvog + 0., (D, V; - 05, + X, vofz) ®,

The matrix adjoint, (M+), is then
2
(DyVy - 05, -0, t X vofl) (X, vog + o,

(m*) = : ’
(X, vog,) (D, V2 - 0a, + X,V0f,)

and the adjoint equations are

oF 5
D,V'of - oa ¢F - 0,, 0F + Xy vop, 6} + X, vop 65 + 0, ¢ =0

1->2 2
and

2
D,V ¢} - 05, 87 + X w05, ¢F + Xy vog, ¢ = 0.

Extension to more energy groups is evident.
In general, then, for a critical system
(M)(®) = 0;  (MH)(") = 0.

The matrix (M) may, however, be expressed as the sum of production and
loss matrices:

(M) = (P) + (D).
In two groups, for example,

(leafl) (leofz)
(B)e=
(X; Vofz) (szgfz)

and

(D,V} - 0, - 0,,) (0)
(L) =

(0,.,) (D,V; - o)
For a critical system, then,

(P+L)(¢) = o.



In general, for a critical or noncritical system,
2
= iy Sl
(£ +1)@ =0

and

The (¢) are here the solutions with matrices (P) and (L). Also, as kt = k,
the general adjoint equation is

(31: + L+) (¢") = 0.

By use of the flux and adjoint equations, and the adjoint properties

f(¢+)(P)(¢)dVdE = ff(¢)(P+)(¢+)dVdE

and

ff(¢+)(L)(¢)dVdE = [f(¢)(L+)(¢+) dVdE,

it may be shown that

2 fﬁ¢+)(P)(¢) dVdE
i f f (6*)(L)(9) avaE

is stationary. By this equation k' may be estimated for systems having
matrix operators (P') and/or (L') differing slightly for (P) and (L) by
replacement of the primed matrices for the unprimed in the integrals, the
flux and adjoints being known solutions of the unprimed matrix diffusion
equations.

k

The perturbation expression for fractional change in the eigenvalue
is then directly obtainable by differentiation (square brackets here repre-
sent the integrations) where (6 ¢%) and (6¢) are neglected: 49

sk _ (eNP)®)]  [(¢H)(6L)(¢)]

® (NPT T THD@]

it
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This further reduces to

sk _ [(¢#")(6P-0L)(¢)]

T [(eNE)@)]

)

if k is unity for the unperturbed system. The denominator is the volume-
energy integral of importance-weighted fission neutrons in the entire sys-
tem before the perturbation.

The forms of the integrals for multigroup perturbation analyses
may be illustrated by the explicit expressions for two-energy groups.
The denominator is then

LRI = [P o, 0,0V + [673,3, 0, Bpav

+f<1>j><zv1 of, ¢, AV +f¢;x2vzofz¢zdv,

where the cross sections are macroscopic, the integrals are over the en-
tire volume of the system, and the fluxes and adjoints are the group fluxes
and adjoints of the unperturbed system. The numerator terms are

[(¢F) (8 P)(9)] = f¢1+><lé(v,0f1)¢1dv +f¢>1+><16(v20f2)¢2dv

+f¢:Xzé(vlofl)¢ldV +f¢:X2<5(v20fz)<Z>de

and

-[(gM)(61)(9)] = -f¢f’5°1¢>1 gy f¢;602¢2dv - f¢r601»z ¢, av

+f¢>;’ 88 odna s féDﬁqu V¢, av -féDﬁq);f - Vo,av.

In the latter expression the first two integrals represent the group absorp-
tion (capture plus fission) effects. The third and fourth terms taken to-

gether represent the effect of the net difference in importance of neutrons
transferred, i.e.,

f(<z>2+ - ¢f) 60,, 0 av.

This indicates the physical meaning of the adjoint function. Thus,
60,.,, %, corresponds to a neutron sink or negative source in group 1 and
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simultaneously a neutron source in group 2. The importance of this ex-
change in its effect upon reactivity, and hence upon the overall neutron
inventory, is determined by the relative values of the adjoints. Physically
then, for example, if a relatively small number of neutrons are continu-
ously externally added or removed at a particular position and energy in a
slightly subcritical system, the overall relative flux is proportional to the
¢t at that position and energy. The last two terms give the importance of
leakage effects in the perturbed region. These diffusion terms are obtained

in the given gradient product form by application of the divergence theorem
and the vector relation

V- (AVB) = VA - VB + AVB.

It is noted that the leakage effect terms are zero at the reactor
center where the gradients are zero. Thus, for central danger coefficient
calculations they do not enter the calculation.

It is both useful and instructive to carry out the fundamental-mode
analysis for the group adjoint fluxes in analogy with the previous bare core
flux analysis. By substituting SIRE ¢;}' and —DZB2¢);' in the two-group ad-
joint equations for the D, V? ¢T and D, Vz¢2+ terms, one obtains, in the re-
verse order,

(v2or,)(X, (bf + X 2¢t.)

2 Oy, * D,B?

and

(v108) G 8% + X, 8h) + 0,8
+ D,B? ;

+
o O0,. +0
a, 1->2

The eigenvalue is then given by

(X1 0% + X, 85)'
S e e )
(X, 67 + X, %)

where the denominator is the initially assumed value, which may be taken
as unity, thus simplifying the group adjoint expressions.

The equality kt = k may be directly shown by substitution of the
explicit expressions for d)fL and <Z>z' into the above expression for k.

It is of interest to compare some multigroup central danger coeffi-
cient calculations by perturbation analysis with experiments. Long _e_ta_l.,(50)
has reported a few comparisons between measurements of fast critical as-
semblies constructed in the Argonne fast facility ZPR-III and calculated
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reactivities. These calculations were made with the 16-group Yiftah et al.,
set.{23) To avoid calculation of the importance volume integral of fission
neutron sources over each of the assemblies, the results were normalized
by ad hoc equation of the calculated and experimental values for Pu®®’. The
values listed in Table VIII are given in millibarns and normalized to the
effective Pu®? cross section per atom in the given fast assembly spectrum
calculated by [(v - 1)0¢ - OC]PUZ”.

Table VIII

EXPERIMENTAL AND CALCULATED CENTRAL
REACTIVITY COEFFICIENTS (in mb)

(from Ref. 50)

Assembly 22 Assembly 23 Assembly 29
Material

Exp Calc Exp Calc Exp Calc
Pu?*? 3238 3395 3250
=2 17772 1939 1774 1964 1913 2066
Wik -84 -94.8 40 67.5 | -100 -97.9
Al =113, 5l = 11(0) 2t 3.5 12.2 P2 2.6
Fe -23.8(SS%) Sl 0.9 2.6 -6.7(SS) -8.5

*¥SS = Stainless Steel.

The core of Assembly 22 is about 9.4 v/o U7‘35, 70 v/o Uzm, and
9 v/o stainless steel. Assembly 23 is about 9.3 v/o U235, 0L v/o U233,
43 v/o aluminum, and 9 v/o stainless steel. Assembly 29 represents an
oxide (UOZ) core having about 5 v/o U235, 10 v/o Uz}a, 24 v/o aluminum,
25 v/o stainless steel, and 14.5 v/o oxygen of density 2.55 gm/cc.

It is seen that U?*® is positive in the harder spectrum Assembly 23
where fast fission is more important. For materials which are neither
strongly capturing nor fissioning, the sign and magnitudes of danger coeffi-

cients are very sensitive to the adjoint functions through the group transfer
matrices.



XIII. PROMPT-NEUTRON LIFETIME AND EFFECTIVE
DELAYED-NEUTRON FRACTION

Another integral quantity of interest is the prompt-neutron lifetime
of a system. For a fast system this is many orders of magnitude smaller
than for a thermal system. As a consequence, if the reactivity of the sys-
tem is more than prompt critical, the flux level of the fast system will rise
extremely rapidly. For example, for a fast reactor the prompt-neutron life-
time ﬂp = 1077 sec, whereas for thermal reactors lp T 1073 to 1075 sec.

Recall that the exponential increase in flux level for a system having

excess prompt reactivity Akp varies with time as eTOt where a = Akp/ﬂp.

If, then, the exponential time variation, ¢ = ¢ (x) eat, is substituted into the
time -dependent diffusion equation,

1 o¢p
DG = Zad)‘i' 'lJZf(Z) = 7 §,

there is obtained a modified form of spatial equation:
2 2 A
DV@- (3, +— )0+ vZ; @ = 0.
v

The spatial solution differs from the case of a non-time-dependent case by
the effect of the term (oc/v)@_ EP may be obtained by adding a l/v-absorber
throughout all regions of the system and evaluating the change in keff due
to the l/v-absorber. If, then, the macroscopic cross section of the 1/v—
absorber is c/v, then

[/p T Akca.lcula.ted/c'

For multigroup analyses the group velocity vj may be estimated by

¢ (E) dE
f v(E)

L e oronph] I
3
f ¢(E) dE
group j

where ¢(E) is some suitable assumed spectral distribution within the group.

Calculation of £, can also proceed by use of fluxes and adjoint
fluxes of the unperturbed system.(49) In this method,
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+
/Zp f ¢ptLpdVdAE = fMdVdE,

v
all all
EdV EdV

as the lifetime multiplied by the loss rate of importance equals the total
importance of all the neutrons, i.e., ff<1>+NdEdV, where N = ¢/v. As will
be illustrated for the case of two energy groups, either #* or Nt may be
used in this importance weighting because both satisfy identical form of
adjoint diffusion equations.

For a critical system the loss rate of importance equals the pro-
duction rate of importance, the latter being an easier quantity to calculate.

Thus,
+
j f 9 ovam
v

by = ————————

P
ff¢+P<dedE

The multigroup form of the expression is illustrated by the explicit two-

group form:
¢te 39
f—l 1dv+f2 = av
Wi 72

p -
f(X1¢TV12f,¢>x + X1¢Tvzzfz¢z + X 87 v 2,9, + X2<D'2"szf2¢2) av

L

)

where the volume integrals are over the entire reactor system.

The 1/v insertion method results in the same Ep value as obtained
by the adjoint weighting method in the limit as ¢ - 0 in a series of 1/v cal-
culations. In a l/v insertion calculation, as the amount of absorber in-
serted is decreased, round-off errors become increasingly important.
Satisfactory agreement between the two methods may be obtained, however,

by extrapolation of the l/v insertion results for various absorber strengths
to zero absorber.

The previous comment upon the equivalence of form of the NT and
¢t equations may be illustrated by use of the two-group normal-mode
solutions previously described. In terms of

viN{ = ¢} and v,N} = ¢F,



the matrix equation for (N+) is
2
(viDyVy - N Gyl T V1X1V10f1) (V1X2V1Of1 il V101_>2) N1+
(v2Xyv,0£,) (voD;V; - v,0, + v X2 V,0f,) Nf
If the Laplacians are replaced by the buckling B? the equations
AN i o

-1 DiBNY - vioINT - vy0,  NT + v Xy v,0f NF + v X,v 08 NF +vi0,  NF = 0
and
+v2 Xy V0 N - v,D,BANT - v, 0N + v, X, 7,01, NF = 0
then allow the normal-mode solutions for the N1 to be obtained:

ool VoV, 06, X NT + XZN;_‘"];
v,0, + vZDZB2

+ o
v1v10£, [ XNy + X Nz + v,0,_,NF

b
Ny = 3
v10; +v10,,, + v;D;B

As the group velocities cancel out, it is seen that the form of the equations

are identical with the ¢;— and d)f’ equations obtained in previous discussions.

The quantity Peff, the effective delayed-neutron fraction, may also
be calculated by use of the group flux and adjoint solutions of the diffusion
equations.(48,49) Beff is given by Beff = D/(P+D), where D is a quantity
proportional to the worth of all the delayed neutrons and P is a quantity
proportional to the worth of all prompt neutrons.

In the multigroup notation and for the case of, for example, the fis-
sionable species U?® and U?*®, D and P have the explicit forms:

D = 525[,[2(@ ]I:Z XZSD ]dv

J

+523[[Z (vof)j3 ][; X“D ]dV

J

and
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P=[1- st]f [Z (vog)}? ¢j][ > Xj¢jf]dv
Vol j

e /s“]f [Z (vof)j8 ¢J-][Z qubj*] av.
v

J J

The fission fractions of the delayed and prompt neutrons are normalized
separately by

25D _ .. 28D =
ij = 1l ZXJ. = 1; ZXJ--I.
J 1 g

The P2 and P?® of the individual fissionable species may be evalu-
ated from experimental values of (n/F), the number of delayed neutrons

per fission, and of 7, the mean value of the number of total neutrons emitted
per fission, by the equation

-4 (2)

for each species. For example, some listed experimental values for the
case of fast neutron fission are:(51,52

= 0.0165; T2 = 2.56;

(i

|5

b O
1

0.0412; T =262

P
|
S
"

The delayed-neutron fraction for U®® is seen to be much larger than that
of U?*. For comparison, other (n/F) values are 0.0063, 0.0070, and
0.0496 for Pu?®*?, U?3, and Th, respectively.(52)

The spectra of delayed neutrons have mean energies considerably
lower than the ~2 MeV of the prompt-neutron spectra. The reported(53)
mean energies of the delayed neutrons of U?®, for example, are about 250
to 900 keV, depending upon the particular delayed period. Attempts have
been made to obtain the detailed delayed spectra for the particular de-
layed groups(54) as well as a detailed, averaged delayed 5pectrum.(53)

As a fast system often contains large quantities of, for example,
fertile U?® material in both core and breeder blanket, the neutron spectrum
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of a fast reactor is such that a considerable fraction of the fissions occur
in the U®®. The calculation of Beff, and as will be seen later of the
reactivity-period relationships, are dependent upon the relative spatial
distributions of the fertile and fuel fissions.

Illustrative of multigroup (10 groups) calculations of lp and Beff
by the adjoint methods compared with experimental values of

GEEN (Beff/zp)exp

are those for a series of zero-power fast assemblies constructed with the
Argonne ZPR-III facility(48) as given in Table IX. The measurements(55,50)
were by the method of Rossi-a. The observed consistent discrepancy be-
tween af{a ¢ and af{xP points to as yet-not-understood errors in calcula-
tion, experiment, or both.

Table IX

COMPARISON OF CALCULATED AND EXPERIMENTAL
VALUES OF (Besf/4p)

(Based on Table in Ref. 48)

28 calc
Asciitig Calcg Fissions b2t zcalc alczalc L eff ) aexp'
Number Pett pg £ Eale _f{
x 10° sec P sec™! x 10753
In Core Total -1 -5
seciaxil0
6F 0.08 0227 0.00734 6.57 151 0.985
9A (o) 157y 031 0.00739 6.39 1.16 =
22 (or 11) 0.305 0.38 0.00731 5.77 i\ 27 1.04
24 0.35 0.42 0.00726 6.64 1.09 0-851
25 (0], 575) 0.40 0.00718 (T4 1.06 0.91

The value of Peff may also be calculated without using adjoint
functions. In this seemingly more direct method, 57) the difference keff
between criticality calculations with and without the delayed neutrons is
obtained. This gives directly Peff = Okeff- The prompt spectrum for
each material in each group is modified in the second calculation from
X3 to (X;n -a™p™), where a:" is the relative abundance of delayed fission
neutrons emitted into energy interval of group j by material m and B
is the total delayed-neutron fraction of material m. Use of this method
requires machine criticality codes in which different fission spectra can

be used for each isotope. If the code requires that the X™ = z X;-’n =l

J
then the quantity Z ()(3n - agn B™) should be re-normalized for each

material and, in addition, all the V‘I]:n for all groups of material m should
be multiplied by (1 - p™).
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It is to be noted that if delayed neutrons of energies near to or
lower than the assumed lower limit of the prompt spectrum are being con-
sidered in the analysis, then the first problem calculated should contain
the fission spectra distribution of both the prompt and delayed neutrons for
each isotope; otherwise (Xj =a ) may be negative for the lower groups.
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XIV. PERIOD-REACTIVITY RELATIONS

Material-replacement data are frequently reported in units of
cents/mole or Ih/kg. A cent is 1/100 of a dollar, ﬁeff/IOO, where Pgsf
is the reactivity required to bring a system from delayed critical to
prompt critical. An inhour is the reactivity required to attain a stable
period of one hour.

For expressing experimental period measurements in such units,
it is necessary to relate these units to the measured reactor periods.
Similarly, experimental quantities expressed in these units must often be
compared with corresponding calculated quantities by use of basic cross-
section and delayed-neutron information, The former can be accomplished
by calculation of the inhour versus period curve. The latter may be com-

pared by calculation of a factor such as the number of inhours per percent
Ak/k.

For small reactivities and two fissionable species, for example

U?% and U%®, the relation between reactivity and asymptotic period is

6

6
Z eff z Beff
p= +
Il s gt 1+ %87

i=1 i=1

where XZS and XZB are the decay constants of the i'th decay groups. These
decay constants are often taken to be equal: )\25 = )\28. If it is assumed that
the delayed-neutron spectra of the delayed groups for a given fissionable
species are the same, then(48,55)

25 DE s,
B == ek
efff ~“ P+D i’

where P and D are as previously defined for the total Beff calculation,

D?5 is the portion of D due to the delayed neutrons of U 8 el a25 is the
fraction of the delayed neutrons from U%5 fission which is em1tted into

the i'th delayed group having decay constant XZS. Analogously,

_ DZB o
i S R

If spectral differences in decay groups are to be accounted for,
then P, D, etc., must be redefined. Information on detailed delay spectra
of the decay groups is quite limited at present. Composite curves or
mean energy values are therefore often used.
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The ratio P(T)/Pesf gives the reactivities in dollars versus period
in seconds, and p(T)/,D(3600) gives the reactivities in inhour units versus
period in seconds.

Examples of reactivity-period curves for fast systems are those
calculated(48) for a series of fast critical assemblies fueled by U?* and
having U®® as an important diluent contributor (see Fig. 11). The curves
are for the range of the usual period measurements in material-
replacement experiments. The sensitivity of the curve positions to the
composition ratio is evident. This sensitivity also implies a sensitivity
to choice of cross-section parameters used in such calculations.

Because the curves of inhour versus period equate the above curves
at T = 3600 sec, the resulting inhour-period curves in the reported study
of the fast assemblies were found to closely overlap in this range of period,
as seen in Fig. 12. This would indicate that the reporting of data in inhours
should remove much of the uncertainties that affect the value of an experi-
mentally reported reactivity that result from use of cross-section cal-
culational parameters.

NO. 25
NO. 6F
-002 T T T T T T E
.001 ] :
1 o ]
ASSEMBLY 6F 1 S ]
> & 4 g ]
= | ASSEMBLY 9A 1 = 2l
> = —
s L
o 3l
<< |
e ), ]
L ASSEMBLY 22 5|
ASSEMBLY 25 L \ g
.0001 | I I | 1 I | | 10 | | I |
30 90 150 210 270 30 90 150 210 270
REACTOR PERIOD, SECONDS REACTOR PERIOD, SECONDS
Fig. 11. Curves of Reactivity versus Period for a Fig. 12. Curves of Inhour versus Periodfor a
Series of U235-fueled Fast Assemblies Series of U235-fueled Fast Assemblies

(From Ref. 48) (From Ref. 48)
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Comparison of experimental reactivity data with calculations neces-
sitate the conversion of inhour to percent Ak/k. This factor is obtained
from the calculated value of P(T = 3600):

6

25 28
P(3600) = Z et Pt | _ inh
= T >‘i 3600 ——k—per inhour,
i=1
from which
inhours/% Ak/k = m

As examples are the ih/% Ak/k factors calculated for the ZPR-III
fast assemblies 6F, 22, and 25. These have been reported(48) as 433, 468,
and 481, respectively, on the basis of use of a particular multigroup cross-
section set. For comparison, calculations with a somewhat different multi-
group set gave values of 425, 458, and 468, respectively, indicating the
sensitivity of this factor to cross sections. It is interesting to note that
the use of the separate Aj values for U?® and U?®*® are reported to increase
these factors by 5 to 10 ih/% Ak/k. This appears to be caused by the fact
that for those delayed groups having the A; of the two species most different
the abundance is greatest.
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XV. SHAPE FACTOR

Criticality calculations by one-dimensional analyses for other than
infinite slabs, spheres, and infinite cylinders cannot be carried out because
the dimensional separation of the spatial variables is not possible. Fur-
thermore, for the case of, for example, a radially reflected finite cylinder,
the axial leakage effects upon reactivity can be accounted for by intro-
ducing the equivalent absorption,

2
DE e
TRz il TR

in all regions. Here Dy j is the diffusion constant of region r and group j,
the extrapolated bare height of the cylinder is Hz, and BZZ is the axial buck-
ling. In most cylindrical systems, however, the presence of axial blankets
or reflectors necessitates either an a priori calculated or estimated re-
flector saving or more directly a two-dimensional R-Z coordinate analysis.

Two-dimensional multigroup analyses, although desirable, are
costly and time-consuming, even with fast computing machines, if sufficient
number of energy groups, as are often necessary properly to characterize
the fast cross sections, are used.

Because fully blanketed cylindrical cores of interest usually have a
core height-to-diameter (L/D) ratio neither extremely large nor small,
the system corresponds more closely in reflector effects and in reaction
rates to an analogous reflected spherical core rather than to a one-
dimensional cylinder with axial reflector savings.

In order to estimate a cylindrical critical size from calculations
of a spherical system having equal reflector thickness and identical core
and reflector compositions, shape factor curves or auxiliary shape factor
calculations are necessary. The shape factor may be defined as

Volume of the spherical critical core

SaH g =
Volume of the cylindrical core of interest’

As this is a geometrical correction, it is not necessary, in general, to
calculate the shape factor with the use of many energy groups. For most
fast systems two or three energy groups should suffice if the few-group
cross sections are obtained by group reduction based on weighting of a
many-group flux solution. Thus, results of few-group, one-dimensional
sphere and analogous two-dimensional cylinder calculation should enable
the shape factor to be obtained. The few-group shape factor can subse-
quently be used to obtain an estimate of a many-group two-dimensional
core size by use of the calculated many-group sphere system.
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Shape factor curves for various bare and reflected systems based
upon experimental data, have been published.(s) Shape factor curves have
shapes approximately as sketched in Fig. 13. For a given core composi-
tion the shape factor of a reflected system is in general larger than that
for the corresponding bare system. As core sizes decrease, the shape
factors generally also decrease.

The studies of Loewenstein and Main(58,59) discuss in detail the
results of various calculations and approximations.
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XVI. FAST-THERMAL COUPLED SYSTEMS

Before discussing reactivity-temperature effects in fast reactors,
the physics calculation aspects of coupled fast-thermal systems will be
briefly presented. Interest in coupled systems isdue to the possibility of
studying fast reactor properties without construction of a large-inventory,
short-prompt-lifetime, all-fast critical and to the possibility of using
coupled fast power breeders to combine the high breeding ratios of fast
reactors with the long neutron lifetime of thermal reactors,

The general coupling theory formulation has been developed by
Avery.(éo) In the overall reactor system kegsf is defined as the average
number of fission neutrons in the next generation resulting from a single
fission neutron. If one considers the critical system to be composed of,
for example, two subcritical parts (in terms of spatial regions or energy
divisions), then four integral parameters may be defined: k,, k;, kj, and
ky;. Here k; is the average number of next-generation fission neutrons in
division 1 resulting from a single fission neutron in division 1, and k; is
the average number of next-generation fission neutrons in division 2 re-
sulting from a single fission neutron in division 2. We may then define
Ay =1 -k;and A, =1 - k; as the subcriticalities of the respective divisions
if for each division the other division is considered solely as a form of re-
flector with the absorption and scattering properties but with v = 0. The
remaining two integral parameters are a measure of the coupling: kj; is
the average number of next-generation fission neutrons in division 2 re-
sulting from a single fission neutron in division 1, and analogously, k;; is
the average number of next generation fission neutrons in assembly 1 re-
sulting from a single fission neutron in Assembly 2.

Then, if S; and S, are the relative numbers of fission neutron
sources in divisions 1 and 2, respectively, the overall criticality conditions
of the system in terms of the above integral parameters follow from the re-
quirement that the following equations must be simultaneously satisfied:

S; = k;S; + k;;S;

and

Sz = kzS; + kg5,

Hence, as

(ki1-1) kg

=0
kpp (ke -1)

the critical condition is

kppksy = 814,
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At criticality the ratio of the fission neutron sources in the two
divisions is

If, then, the division is, for example, between predominantly fast fission
and thermal fission spatial regions,

The ratio SF/SS thus may be increased and Ap kept sufficiently large by
increasing the coupling from slow to fast regions.

A quantity of interest is the division of reactivity, Consider the

system to be critical. Suppose then that 1;, the number of neutrons per
fission emittedin 1, to be changed by the fraction 6vl/v1, Then the ratio

fe] k/évl =
T 7 1
is defined as the fraction of the reactivity in division 1, and analogously

for the other division. Correspondingly, @, may also be defined through
the use of fluxes and adjoint fluxes as

fv /E X vZ fpdEAV
= 1

= .
+u3,
[y [& xetvzgeaEay

In terms of the coupling parameters it has been shown that

o = _S‘_Z__.andoc :._AL_..‘
4 A1+Az z A1+A2.

The prompt-neutron lifetime has also been shown to be expressible
as

P Mk, A,

= + & - (o1 + L152),
L e R v

where £;_, is defined as the average prompt-neutron lifetime for the process
of a fission neutron in division 1 giving rise to a next-generation fission neu-
tron in Assembly 2, etc. If, in particular, division 1 signifies a fast fission
spatial region and division 2 a thermal fission spatial region, then /, and
£, are very small relative to £, and /,-,, because the former two param-
eters do not contain slowing-down times. Then
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which can be further simplified by noting that by s =45 so that

From this it is noted that the prompt-neutron lifetime is then approximately
equal to the prompt lifetime of the thermal part multiplied by the fraction of
reactivity in the thermal part.

It is instructive to point out some methods of calculations(61) of the
various integral parameters by means of multigroup criticality codes. They
illustrate examples of how criticality codes may be used to determine quan-
tities other than criticality conditions.

The a; for each of the i'th division, be it energy-wise and/or geo-
metrical, may be obtained by calculation of dkeff from criticality by varia-
tion of the vj by a fraction évi/vi.

Then
Okeff
M7 vy
and

in the limit that all 6vi/vi approach zero.

1ae kj - j may be obtained by use of the multigroup fluxes from a
coupled critical calculation., From these fluxes the sources due to fissions
in division i are then known. Then use these i'th division sources as applied
sources in an inhomogeneous (v = 0) calculation., From the resulting calcu-
lated flux integrals over regions and groups together with the known values
of (vZf) of the j'th division, the ratio of the sources is

Si’*j/si = ki —j.
Analogously,
Si—»i/si = kj.

Examples for which coupling analyses are useful are schematically
a fast fueled region having a filter (decoupling) region separating it from



either a surrounding thermal fueled or thermal moderating region, The
Argonne ZPR-V critical assembly 62) and the Atomics International crit-
ical(63) for the Advance Epithermal Thorium Reactor Program contained
thermal fueled regions surrounding the filters., The Argonne coupled fast
breeder critical experiment(él) instead had thermal moderating region
surrounding the filter.

Although the coupled systems are only a very particular form of a
fast reactor, a brief qualitative discussion of the neutronics will be given
because the complexity of the interrelation of the fast, intermediate, and
thermal neutrons is instructive in understanding various aspects of fast
reactor neutronics in general.

In the coupled power breeder experiment,(él) the central fast core
region contained about 14 v/o U23B, 15 v/o U238, and 41 v/o aluminum (to
simulate sodium coolant), The surrounding filter of natural uranium was
about 5 cm thick. The surrounding outer thermal moderator consisted of
27-cm-thick beryllium surrounded by a depleted uranium blanket to cap-
ture neutrons otherwise lost by leakage. Qualitatively, for this system
the natural uranium functions as a barrier for the thermal and epi-
cadmium resonance region neutrons from going from the beryllium mod-
erator to the fast core. Simultaneously, the filter allows fast core neutrons
to traverse the filter and enter the beryllium region to become moderated.
Furthermore, because the beryllium region is unfueled, the fuel for the
thermalized neutrons is the U?* present in the adjacent natural uranium
filter. In this experiment Qfagt = 0.96, Othermal = 0.04, and fp = 13 x
107 sec. For the coupled ZPR-V experiment,(éz) only ~25% of the re-
activity was due to fast fissions and ﬂp = 39 x 1078 sec.

7o)




XVII, TEMPERATURE EFFECTS ON REACTIVITY -
SODIUM VOID EFFECT

In thermal reactors increase in temperature, due to increase in
fission density, primarily affects reactivity by two mechanisms. One is
the decreased density of the fuel and moderator due to thermal expansion
upon heating; the temperature increase in the fuel is transmitted to the
moderator. The other is the increased moderator temperature, that causes
a shift in the quasi-Maxwellian distribution of thermalized neutrons toward
slightly higher energies. The first effect results in reactivity change
through change in leakage and moderating properties. The second effect
causes reactivity change because the absorption cross section in the
thermal-energy region generally decrease with increased energy of the
incident neturons. The increase in diffusion length then results in in-
creased leakage.

For the case of a large graphite-moderated reactor, a value of
=26 10%° (Ak/k)/°C has been given(l) for the spectral shift effect and of
about -2.8 x 107° Ak/k/°C for the volume-density effect. The later con-
sists of -0.29 x 107° Ak/k/°C due to density decrease assuming constant
volume and of +0.095 x 10~° Ak/k°C due to the accompanying increase in
volume due to core leakage.

Density-volume temperature effects also exist in fast systems, but
they are often smaller than in thermal systems. The numerous possible
expansions and density changes which comprise the overall effect are fre-
quently individually small and difficult to estimate because of the strong
dependence upon the particular structural characteristics.

The spectral shift effect is negligible in fast reactors because the

neutron spectra are high in energy, so that the effects of lattice vibrations
in altering the spectra are negligible.

Lack of the spectral shift effect together with frequently small
volume-density effects has necessitated detailed considerations of other-
wise numerous small temperature-reactivity effects.

McCarthy(64) gives the following breakdown of the isothermal
temperature coefficients (in Ak/k/°C) for various density-volume effects
in the core and blanket of the Fermi Fast Breeder Reactor:

Core:

(a) Axial fuel expansion: -2.5 x 10~¢

(b) Radial fuel expansion (sodium expulsion): -0.6 x 10-°

(c) Density change of coolant and of subassembly
material: -7.1 x 10-°

(d) Structural expansion: -6.0 x 10-°
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Blanket:

(e) Density change of coolant and of subassembly
material: -3.3 x 10-¢

(f) Growth of uranium; -0.5 x 10-°

(g) Structural expansion: -0.6 x 10-¢

An important contributor to the volume-density effect in fast, sodium-
cooled reactors is the reactivity change resulting from decrease in sodium
coolant brought about by density decrease with temperature or possibly by
accidental sodium expulsion. An overall decrease in mean sodium density
in the system can also occur by expansions of fuel rods, which causes a dis-
placement of the sodium. This effect is referred to as the sodium-void re-
activity effect. If reactivity increase accompanies sodium loss, the sodium-
void coefficient is considered positive; otherwise it is negative. This quantity
is receiving much attention because of the possibility in some large fast re-
actors of having a potentially dangerous positive sodium-void effect. (65)

The sodium-void effect essentially consists of two effects. One is
the increased leakage which accompanies the decreased fraction of sodium
volume. The magnitude of this effect diminishes with increased core dimen-
sions. The second effect is due to the shift in the fast neutron flux spectrum
toward higher energies, resulting from the decreased inelastic and elastic
moderation due to loss of some or all of the sodium. The resulting harder
fast reactor spectrum tends to increase fertile fission, thereby adding re-
activity. The spectral shift can also increase reactivity because the ratio of
fissile fission to core absorptions may be greater. Such can be the case, for
example, in plutonium-fueled cores for which the fission cross section of
plutonium is reasonably constant whereas the core absorption decreases with
increasing energies. For U?*- or U?**_fueled systems this is less likely be-
cause energy dependencies of fission and capture properties are closer.

Yiftah and Okrent,(9) using a l6-group cross-section set, calcu-
lated that at a core size of about 3500 liters the sodium-void effect
becomes positive for the particular Pu?¥ oxide system studied. Examples
of the sodium-void curves obtained by them are shown in Fig. 14, where
the reactivity change is expressed in terms of <5MC/MC, the fractional
increment in critical mass which would produce the same reactivity effect
as the removal of the sodium.

Calculations of sodium-void effects by the simple expediency of de-
creasing homogeneously the sodium content in a multigroup analysis con-
sisting of, for example, 16 groups can, of course, only be considered as
indicative. Spatial distributions of the sodium voids, effects of scattering
resonances of the core materials, and effects of absorption resonances need
also be considered. The composite resonances of the various core materials
may affect the self-shieldings differently, depending upon amount of sodium.
Bhide and Hummel,(66) for example, have re-calculated by means of the
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fueled Cores with Steel Structure (Com-
posite Curves from Ref. 9)

of suitable core shapes also might be helpful.

ELMOE program the previously
referred-to plutonium oxide-fueled
system by taking into account the
effect of the scattering resonances,
They noted that this lowered the
value of the calculated core size at
which the sodium-void effect became
positive to 2500 liters.

Sodium-void effects may be
made more negative (or less posi-
tive) by enhancing the reactivity
effect of neutron leakage due to so-
dium loss and by diminishing the
reactivity effect of spectral harden-
ing.(65,67-70) Thus, compositions
having smaller volume fractions of
materials other than sodium should
have greater overall transport
cross-section decrease with loss of
sodium. Enhancement of neutron
leakage with loss of sodium by choice
Reduction in the amount of

fertile material in the core should be helpful by reducing the positive spec-
tral shift effect through decrease of the fast fission contribution of the

fertile material.

Decrease of structural materials or use of structural

materials with very small fast absorption cross sections and/or with energy
variations which do not rapidly decrease with increasing energy should also

diminish the spectral shift effect.

Currently the sodium-void effect and its relation to other reactor
considerations (such as control, breeding, safety, power, and economics)
are not sufficiently well understood. The present status of the sodium-
void problem and, in addition, the subsequently to be discussed Doppler
problem are documented in papers recently presented(70) by numerous

investigators.
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XVIII. DOPPLER EFFECT

Another reactivity-temperature effect which is receiving consider-
able attention is the Doppler effect in fast reactors. The energydependence
of the cross sections of the fissile and fertile isotopes have a profuse
resonance structure beginning at near thermal energies and continuing well
into the spectral region of fast reactors. These give rise to the Doppler
effect, which results from the temperature broadening of the resonances
coupled with the fact that the neutron flux at a resonance is highly self-
shielded. Resonance broadening increase the overall reaction rates by
increasing the cross sections in the wings of the resonances.

For small, highly concentrated, fast systems the Doppler effect is
generally very small. The neutron spectra are at very high energies.
Capture and fission resonances in both fuel and fertile isotopes are highly
overlapping, so that temperature broadening does not modify greatly the
reaction rates. The neutron energies of most importance to Doppler ef-
fects are ~0.1 MeV in these cases.(71) The effect arises primarily from
fluctuations in resonance strengths and spacings.

As systems become larger, density-volume effects diminish and
the importance of the Doppler effect increases. The lowered spectral
distribution then places some neutrons also in the energy region of sepa-
rated, but not necessarily experimentally resolved, resonances. In this
composition region the question of whether or not the quantity of resonance
capturing fertile material relative to resonance capture and resonance
fissioning fuel material is sufficient to obtain a nonpositive Doppler effect
is important.

With still larger systems, especially those containing moderating
elements such as carbon or oxygen present in carbide and oxide fuel and
fertile materials, the spectra become sufficiently low in energy that part
of the spectra lie within the energy regions of resolved resonances. In
systems of this size and composition range, it appears most important that
a system have a reasonably large negative Doppler effect to insure a
prompt-acting reactivity decrease with temperature increase. For ex-
ample, in the relatively small, hard spectrum, EBR-II, the much larger
and overall negative expansion effects of fuel, coolant, and structure over-
ride the small but positive calculated value of ~+0.4 x it~ Ak/°C for the
Doppler coefficient.(72) In contrast, a softer-spectrum, low-enrichment,
large fast system might have a value of ~-10 x i@ Ak/"C for the Doppler
coefficient. 73) Relatively large negative Doppler effects may in such
large systems be most important to compensate for very small expansion
and leakage effects, and in some cases to counteract possible positive
sodium-void effects. In addition, the possibility of inconsistent expansion
in ceramics due to cracking exists. It may be mentioned that power
Doppler effects are greater with ceramics because of the smaller heat
transfers and capacities.
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In any case, insofar as a multigroup Doppler-effect analysis is
concerned, the problem is that of obtaining suitable effective group cross
sections as a function of temperature such that the reaction rates of the
effective cross section times the flux obtained with these effective cross
sections result in the correct reaction rates as obtainable from a very
detailed fine group analysis. A detailed report on the theoretical and cal-
culational aspects of Doppler effect in fast reactors is given by Nicholson(74)
A general review, of both experiment and analysis, is that of Graves.(75)

Recall that the Doppler-broadened single-level Breit-Wigner
formula for process x is:(27,71)

0x(E,T) = 0,(Ty/T) %(q, £),

+oc0
2
£ exp [- % (a- Y)Z]
vl €) = - dy
VAT Lty

is an obtainable tabulated function and where

where

Oy = 4m x%g I /T.
The parameters are
0 = S ),

where [ is the reduced mass and E is the neutron energy in the lab-
oratory system,

g = @I+1)/2(21 + 1),

where J is the spin of the compound nucleus and I is the spin of the target
nucleus,

q = (E —Er/zll",

AT

and

where
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A= /4EkT;A

is the Doppler width.

The integral over a resonance for process x is

+ 00
r.r
04 (E, T)dE = 2m?g x? —=

X
=00
For an energy interval AE about E large compared to resonance

widths and containing more than one resonance, the average cross section
for the resonance process is

L
o= 1 < 2. 22 =N x)
o e g nt =—— ;
*E = AE Z ; r at ER

resonances
in AE

because each resonance contribution is essentially from a small energy

interval about ER. If average resonance spacings S and average resonance
parameters are used, the formula becomes

O g = (gl) mr%"—(—girrl),

XJ

where the number of resonances,

AE
o
S
and E lies within AE. The analogous expression for the compound

nucleus is

O

1

(1/8) 2m? %2 (gTy).

In the discussion of flux depletion at resonances, however, it was

noted that
¢ ~ 1/Eo(E)

at sufficient distances from sources if we may assume constant collision
density per unit lethargy. Also, if only a small region AE about E is con-
sidered, ® ~ 1/0(E) in AE, i.e., 0 is approximately constant. Then the
effective cross section, in AE, for resonance process x is
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and

ook AE AE
The total cross section is

Y= ©L, 4 G

where 0, refers to absorption processes and Og to scattering processes.
The total cross section is often expressed as

0= 0¥ + Tponres:

where Oponres includes the scattering and nonresonant absorption
processes. The ratio cnonres/OO: referred to as f3, is a frequently used

parameter in Doppler effect analyses.(74,75) For example, (0x/0)AE may
be expressed as

P v
e = &l
I AEI//+B

The latter is of the form of the function

)
J(E,B)=f T, kel
AT

used in calculations of effective resonance integrals. The self-shielding

factor is
o
st (2) /()
i ol o o
ax,E (G ‘

<)



In this introductory presentation only the treatment of the resonance
terms will be discussed. In any complete analyses interference terms be-
tween resonance and potential scattering must also be considered.

For the case of resolved resonances these quantities are, of course,
related to the effective resonance integrals. These integrals have been
based upon the narrow resonance (NR) or narrow resonance infinite ab-
sorber (NRIA) assumptions;(76) that is, the average energy loss by elastic
collision exceeds the practical width of the resonance, as is usually the
case for the higher-energy resolved resonances. At the still lower-lying
resonances where the average energy loss may be smaller than the prac-
tical width, the NRIA method treats the absorber atoms as infinite in mass.
Tables(77) and codes(78) for calculations of Doppler-broadened effective
resonance integrals exist.

For unresolved but separated resonances, the NR approximation is
again used. The assumption of constant total collision over a resonance is
valid for either the narrow well-separated cases or for the narrow closely
spaced cases having spacing small compared with the energy loss. The
statistical distribution of neutron widths given by Porter and Thomas,(79)

1 e_y/2

NV

dy,

where

i I-‘n/l——‘n

and Fn is the average reduced neutron width. The radiation width and the
average level spacing are taken to be constants. For the fission widths
the value of the parameter a in the chi-squared distribution,

(i) B 5 =
2 a 2 2
Blycal = — (—2 y} & :
r(3)
is not certain. Values of 2 and 3 are used (a = 1 for neutron widths).(75)

The region of strong overlapping is also treated by statistical
methods.(71,74,75,80) Because of the large energy loss per inelastic
collision, a process which is important at these higher energies, com-
pared with the smaller spacing of the levels, the assumption of a constant
total collision over any energy interval AE containing the resonances is
again assumed. Then #(E) o(E) is approximately constant and
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’ _dE

re OE)

as previously. Because of the strong overlapping of the many resonances,
however, o(E) may be treated as a fairly smooth function with superim-
posed fluctuations. (Doppler broadening, furthermore, will reduce further
these small fluctuations.) For example, widths are ~10 eV and mean
spacings ~0.8 eV. Thus

Sl
o

so that

L e Dhes i S i) o
ofE) " G+[o(E)-05] ° T (

~
|

and

n

(%)
a
The effective cross section in
the form

1
=

AE for process x is then expressible in

where only 040 is a temperature-dependent term; other terms are un-
weighted and temperature-independent quantities.

Because of resonance overlap it is necessary to use a distribution

for the level spacings in addition to the average resonance widths and width
distributions.

It may be noted(73) that the resolved region in, for example, the
fertile U238 isotope is about from 5 to 1,000 eV. The unresolved but well -
separated region is about from 1 to 9 keV. In contrast, for the fissionable
Pu?®? isotope the resolved region extends only to about 60 eV.



In concluding this limited presentation, the possible interplay of
the sodium-void effect and Doppler effect should be mentioned. For ex-
ample, an excursion with loss of sodium may result in reduction of
Doppler effect through shift of flux distribution toward higher energies at
which the Doppler effect is less negative.

In many fast zero-power facilities the fuel and fertile materials
are not homogenized, but are, instead, separate pieces. The possibility
of fuel temperatures exceeding fertile temperatures might result in a

positive or, at least, less negative Doppler coefficient than in the homog-
enized case.

Last, but not least, is the fast reactor melt-down hazard.(81)
Because of the large fissionable material inventory, an excursion which
would lead to fuel melting conceivably might produce a highly super-
critical configuration.
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